1.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
2.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
3.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
4.Characteristics of Pediatric Ulcerative Colitis at Diagnosis in Korea: Results From a Multicenter, Registry-Based, Inception Cohort Study
Jin Gyu LIM ; Ben KANG ; Seak Hee OH ; Eell RYOO ; Yu Bin KIM ; Yon Ho CHOE ; Yeoun Joo LEE ; Minsoo SHIN ; Hye Ran YANG ; Soon Chul KIM ; Yoo Min LEE ; Hong KOH ; Ji Sook PARK ; So Yoon CHOI ; Su Jin JEONG ; Yoon LEE ; Ju Young CHANG ; Tae Hyeong KIM ; Jung Ok SHIM ; Jin Soo MOON
Journal of Korean Medical Science 2024;39(49):e303-
Background:
We aimed to investigate the characteristics of pediatric ulcerative colitis (UC) at diagnosis in Korea.
Methods:
This was a multicenter, registry-based, inception cohort study conducted in Korea between 2021 and 2023. Children and adolescents newly diagnosed with UC < 18 years were included. Baseline clinicodemographics, results from laboratory, endoscopic exams, and Paris classification factors were collected, and associations between factors at diagnosis were investigated.
Results:
A total 205 patients with UC were included. Male-to-female ratio was 1.59:1, and the median age at diagnosis was 14.7 years (interquartile range 11.9–16.2). Disease extent of E1 comprised 12.2% (25/205), E2 24.9% (51/205), E3 11.2% (23/205), and E4 51.7% (106/205) of the patients. S1 comprised 13.7% (28/205) of the patients. The proportion of patients with a disease severity of S1 was significantly higher in patients with E4 compared to the other groups (E1: 0% vs. E2: 2% vs. E3: 0% vs. E4: 24.5%, P < 0.001). Significant differences between disease extent groups were also observed in Pediatric Ulcerative Colitis Activity Index (median 25 vs. 35 vs. 40 vs. 45, respectively, P < 0.001), hemoglobin (median 13.5 vs.13.2 vs. 11.6 vs. 11.4 g/dL, respectively, P < 0.001), platelet count (median 301 vs. 324 vs. 372 vs. 377 × 103 /μL, respectively, P = 0.001), C-reactive protein (median 0.05 vs. 0.10 vs. 0.17 vs. 0.38 mg/dL, respectively, P < 0.001), and Ulcerative Colitis Endoscopic Index of Severity (median 4 vs. 4 vs. 4 vs. 5, respectively, P = 0.006). No significant differences were observed in factors between groups divided according to sex and diagnosis age.
Conclusion
This study represents the largest multicenter pediatric inflammatory bowel disease cohort in Korea. Disease severity was associated with disease extent in pediatric patients with UC at diagnosis.
5.Characteristics of Pediatric Ulcerative Colitis at Diagnosis in Korea: Results From a Multicenter, Registry-Based, Inception Cohort Study
Jin Gyu LIM ; Ben KANG ; Seak Hee OH ; Eell RYOO ; Yu Bin KIM ; Yon Ho CHOE ; Yeoun Joo LEE ; Minsoo SHIN ; Hye Ran YANG ; Soon Chul KIM ; Yoo Min LEE ; Hong KOH ; Ji Sook PARK ; So Yoon CHOI ; Su Jin JEONG ; Yoon LEE ; Ju Young CHANG ; Tae Hyeong KIM ; Jung Ok SHIM ; Jin Soo MOON
Journal of Korean Medical Science 2024;39(49):e303-
Background:
We aimed to investigate the characteristics of pediatric ulcerative colitis (UC) at diagnosis in Korea.
Methods:
This was a multicenter, registry-based, inception cohort study conducted in Korea between 2021 and 2023. Children and adolescents newly diagnosed with UC < 18 years were included. Baseline clinicodemographics, results from laboratory, endoscopic exams, and Paris classification factors were collected, and associations between factors at diagnosis were investigated.
Results:
A total 205 patients with UC were included. Male-to-female ratio was 1.59:1, and the median age at diagnosis was 14.7 years (interquartile range 11.9–16.2). Disease extent of E1 comprised 12.2% (25/205), E2 24.9% (51/205), E3 11.2% (23/205), and E4 51.7% (106/205) of the patients. S1 comprised 13.7% (28/205) of the patients. The proportion of patients with a disease severity of S1 was significantly higher in patients with E4 compared to the other groups (E1: 0% vs. E2: 2% vs. E3: 0% vs. E4: 24.5%, P < 0.001). Significant differences between disease extent groups were also observed in Pediatric Ulcerative Colitis Activity Index (median 25 vs. 35 vs. 40 vs. 45, respectively, P < 0.001), hemoglobin (median 13.5 vs.13.2 vs. 11.6 vs. 11.4 g/dL, respectively, P < 0.001), platelet count (median 301 vs. 324 vs. 372 vs. 377 × 103 /μL, respectively, P = 0.001), C-reactive protein (median 0.05 vs. 0.10 vs. 0.17 vs. 0.38 mg/dL, respectively, P < 0.001), and Ulcerative Colitis Endoscopic Index of Severity (median 4 vs. 4 vs. 4 vs. 5, respectively, P = 0.006). No significant differences were observed in factors between groups divided according to sex and diagnosis age.
Conclusion
This study represents the largest multicenter pediatric inflammatory bowel disease cohort in Korea. Disease severity was associated with disease extent in pediatric patients with UC at diagnosis.
6.Characteristics of Pediatric Ulcerative Colitis at Diagnosis in Korea: Results From a Multicenter, Registry-Based, Inception Cohort Study
Jin Gyu LIM ; Ben KANG ; Seak Hee OH ; Eell RYOO ; Yu Bin KIM ; Yon Ho CHOE ; Yeoun Joo LEE ; Minsoo SHIN ; Hye Ran YANG ; Soon Chul KIM ; Yoo Min LEE ; Hong KOH ; Ji Sook PARK ; So Yoon CHOI ; Su Jin JEONG ; Yoon LEE ; Ju Young CHANG ; Tae Hyeong KIM ; Jung Ok SHIM ; Jin Soo MOON
Journal of Korean Medical Science 2024;39(49):e303-
Background:
We aimed to investigate the characteristics of pediatric ulcerative colitis (UC) at diagnosis in Korea.
Methods:
This was a multicenter, registry-based, inception cohort study conducted in Korea between 2021 and 2023. Children and adolescents newly diagnosed with UC < 18 years were included. Baseline clinicodemographics, results from laboratory, endoscopic exams, and Paris classification factors were collected, and associations between factors at diagnosis were investigated.
Results:
A total 205 patients with UC were included. Male-to-female ratio was 1.59:1, and the median age at diagnosis was 14.7 years (interquartile range 11.9–16.2). Disease extent of E1 comprised 12.2% (25/205), E2 24.9% (51/205), E3 11.2% (23/205), and E4 51.7% (106/205) of the patients. S1 comprised 13.7% (28/205) of the patients. The proportion of patients with a disease severity of S1 was significantly higher in patients with E4 compared to the other groups (E1: 0% vs. E2: 2% vs. E3: 0% vs. E4: 24.5%, P < 0.001). Significant differences between disease extent groups were also observed in Pediatric Ulcerative Colitis Activity Index (median 25 vs. 35 vs. 40 vs. 45, respectively, P < 0.001), hemoglobin (median 13.5 vs.13.2 vs. 11.6 vs. 11.4 g/dL, respectively, P < 0.001), platelet count (median 301 vs. 324 vs. 372 vs. 377 × 103 /μL, respectively, P = 0.001), C-reactive protein (median 0.05 vs. 0.10 vs. 0.17 vs. 0.38 mg/dL, respectively, P < 0.001), and Ulcerative Colitis Endoscopic Index of Severity (median 4 vs. 4 vs. 4 vs. 5, respectively, P = 0.006). No significant differences were observed in factors between groups divided according to sex and diagnosis age.
Conclusion
This study represents the largest multicenter pediatric inflammatory bowel disease cohort in Korea. Disease severity was associated with disease extent in pediatric patients with UC at diagnosis.
7.Characteristics of Pediatric Ulcerative Colitis at Diagnosis in Korea: Results From a Multicenter, Registry-Based, Inception Cohort Study
Jin Gyu LIM ; Ben KANG ; Seak Hee OH ; Eell RYOO ; Yu Bin KIM ; Yon Ho CHOE ; Yeoun Joo LEE ; Minsoo SHIN ; Hye Ran YANG ; Soon Chul KIM ; Yoo Min LEE ; Hong KOH ; Ji Sook PARK ; So Yoon CHOI ; Su Jin JEONG ; Yoon LEE ; Ju Young CHANG ; Tae Hyeong KIM ; Jung Ok SHIM ; Jin Soo MOON
Journal of Korean Medical Science 2024;39(49):e303-
Background:
We aimed to investigate the characteristics of pediatric ulcerative colitis (UC) at diagnosis in Korea.
Methods:
This was a multicenter, registry-based, inception cohort study conducted in Korea between 2021 and 2023. Children and adolescents newly diagnosed with UC < 18 years were included. Baseline clinicodemographics, results from laboratory, endoscopic exams, and Paris classification factors were collected, and associations between factors at diagnosis were investigated.
Results:
A total 205 patients with UC were included. Male-to-female ratio was 1.59:1, and the median age at diagnosis was 14.7 years (interquartile range 11.9–16.2). Disease extent of E1 comprised 12.2% (25/205), E2 24.9% (51/205), E3 11.2% (23/205), and E4 51.7% (106/205) of the patients. S1 comprised 13.7% (28/205) of the patients. The proportion of patients with a disease severity of S1 was significantly higher in patients with E4 compared to the other groups (E1: 0% vs. E2: 2% vs. E3: 0% vs. E4: 24.5%, P < 0.001). Significant differences between disease extent groups were also observed in Pediatric Ulcerative Colitis Activity Index (median 25 vs. 35 vs. 40 vs. 45, respectively, P < 0.001), hemoglobin (median 13.5 vs.13.2 vs. 11.6 vs. 11.4 g/dL, respectively, P < 0.001), platelet count (median 301 vs. 324 vs. 372 vs. 377 × 103 /μL, respectively, P = 0.001), C-reactive protein (median 0.05 vs. 0.10 vs. 0.17 vs. 0.38 mg/dL, respectively, P < 0.001), and Ulcerative Colitis Endoscopic Index of Severity (median 4 vs. 4 vs. 4 vs. 5, respectively, P = 0.006). No significant differences were observed in factors between groups divided according to sex and diagnosis age.
Conclusion
This study represents the largest multicenter pediatric inflammatory bowel disease cohort in Korea. Disease severity was associated with disease extent in pediatric patients with UC at diagnosis.
8.Early Prediction of Mortality for Septic Patients Visiting Emergency Room Based on Explainable Machine Learning: A Real-World Multicenter Study
Sang Won PARK ; Na Young YEO ; Seonguk KANG ; Taejun HA ; Tae-Hoon KIM ; DooHee LEE ; Dowon KIM ; Seheon CHOI ; Minkyu KIM ; DongHoon LEE ; DoHyeon KIM ; Woo Jin KIM ; Seung-Joon LEE ; Yeon-Jeong HEO ; Da Hye MOON ; Seon-Sook HAN ; Yoon KIM ; Hyun-Soo CHOI ; Dong Kyu OH ; Su Yeon LEE ; MiHyeon PARK ; Chae-Man LIM ; Jeongwon HEO ; On behalf of the Korean Sepsis Alliance (KSA) Investigators
Journal of Korean Medical Science 2024;39(5):e53-
Background:
Worldwide, sepsis is the leading cause of death in hospitals. If mortality rates in patients with sepsis can be predicted early, medical resources can be allocated efficiently. We constructed machine learning (ML) models to predict the mortality of patients with sepsis in a hospital emergency department.
Methods:
This study prospectively collected nationwide data from an ongoing multicenter cohort of patients with sepsis identified in the emergency department. Patients were enrolled from 19 hospitals between September 2019 and December 2020. For acquired data from 3,657 survivors and 1,455 deaths, six ML models (logistic regression, support vector machine, random forest, extreme gradient boosting [XGBoost], light gradient boosting machine, and categorical boosting [CatBoost]) were constructed using fivefold cross-validation to predict mortality. Through these models, 44 clinical variables measured on the day of admission were compared with six sequential organ failure assessment (SOFA) components (PaO 2 /FIO 2 [PF], platelets (PLT), bilirubin, cardiovascular, Glasgow Coma Scale score, and creatinine).The confidence interval (CI) was obtained by performing 10,000 repeated measurements via random sampling of the test dataset. All results were explained and interpreted using Shapley’s additive explanations (SHAP).
Results:
Of the 5,112 participants, CatBoost exhibited the highest area under the curve (AUC) of 0.800 (95% CI, 0.756–0.840) using clinical variables. Using the SOFA components for the same patient, XGBoost exhibited the highest AUC of 0.678 (95% CI, 0.626–0.730). As interpreted by SHAP, albumin, lactate, blood urea nitrogen, and international normalization ratio were determined to significantly affect the results. Additionally, PF and PLTs in the SOFA component significantly influenced the prediction results.
Conclusion
Newly established ML-based models achieved good prediction of mortality in patients with sepsis. Using several clinical variables acquired at the baseline can provide more accurate results for early predictions than using SOFA components. Additionally, the impact of each variable was identified.
9.Efficacy and safety of sofosbuvir–velpatasvir and sofosbuvir–velpatasvir–voxilaprevir for hepatitis C in Korea: a Phase 3b study
Jeong HEO ; Yoon Jun KIM ; Sung Wook LEE ; Youn-Jae LEE ; Ki Tae YOON ; Kwan Soo BYUN ; Yong Jin JUNG ; Won Young TAK ; Sook-Hyang JEONG ; Kyung Min KWON ; Vithika SURI ; Peiwen WU ; Byoung Kuk JANG ; Byung Seok LEE ; Ju-Yeon CHO ; Jeong Won JANG ; Soo Hyun YANG ; Seung Woon PAIK ; Hyung Joon KIM ; Jung Hyun KWON ; Neung Hwa PARK ; Ju Hyun KIM ; In Hee KIM ; Sang Hoon AHN ; Young-Suk LIM
The Korean Journal of Internal Medicine 2023;38(4):504-513
Despite the availability of direct-acting antivirals (DAAs) for chronic hepatitis C virus (HCV) infection in Korea, need remains for pangenotypic regimens that can be used in the presence of hepatic impairment, comorbidities, or prior treatment failure. We investigated the efficacy and safety of sofosbuvir–velpatasvir and sofosbuvir–velpatasvir–voxilaprevir for 12 weeks in HCV-infected Korean adults. Methods: This Phase 3b, multicenter, open-label study included 2 cohorts. In Cohort 1, participants with HCV genotype 1 or 2 and who were treatment-naive or treatment-experienced with interferon-based treatments, received sofosbuvir–velpatasvir 400/100 mg/day. In Cohort 2, HCV genotype 1 infected individuals who previously received an NS5A inhibitor-containing regimen ≥ 4 weeks received sofosbuvir–velpatasvir–voxilaprevir 400/100/100 mg/day. Decompensated cirrhosis was an exclusion criterion. The primary endpoint was SVR12, defined as HCV RNA < 15 IU/mL 12 weeks following treatment. Results: Of 53 participants receiving sofosbuvir–velpatasvir, 52 (98.1%) achieved SVR12. The single participant who did not achieve SVR12 experienced an asymptomatic Grade 3 ASL/ALT elevation on day 15 and discontinued treatment. The event resolved without intervention. All 33 participants (100%) treated with sofosbuvir–velpatasvir–voxilaprevir achieved SVR 12. Overall, sofosbuvir–velpatasvir and sofosbuvir–velpatasvir–voxilaprevir were safe and well tolerated. Three participants (5.6%) in Cohort 1 and 1 participant (3.0%) in Cohort 2 had serious adverse events, but none were considered treatment-related. No deaths or grade 4 laboratory abnormalities were reported. Conclusions: Treatment with sofosbuvir–velpatasvir or sofosbuvir–velpatasvir–voxilaprevir was safe and resulted in high SVR12 rates in Korean HCV patients.
10.Fracture Liaison Service in Korea: 2022 Position Statement of the Korean Society for Bone and Mineral Research
Jae-Young LIM ; Young Yul KIM ; Jin-Woo KIM ; Seongbin HONG ; Kyunghoon MIN ; Jaewon BEOM ; Byung-Ho YOON ; Sang Yoon LEE ; Sung Hye KONG ; Jun-Il YOO ; Myung Sook PARK ; Jae-Hwi NHO ; Sangbong KO ; Min Wook JOO ; Dong Hwan KIM ; Chan Ho PARK ; Tae-Young KIM ; Seil SOHN ; So Young PARK ; A Ram HONG ; Young Joo KWON ; Sung Bae PARK ; Young-Kyun LEE ; Nam Hoon MOON ; Bo Ryun KIM ; Yongsoon PARK ; Yonghan CHA ; Yong-Chan HA
Journal of Bone Metabolism 2023;30(1):31-36
Osteoporosis and osteoporotic fractures cause socioeconomic concerns, and medical system and policies appear insufficient to prepare for these issues in Korea, where the older adult population is rapidly increasing. Many countries around the world are already responding to osteoporosis and osteoporotic fractures by adopting fracture liaison service (FLS), and such an attempt has only begun in Korea. In this article, we introduce the operation methods for institutions implementing FLS and characteristics of services, and activities of the FLS Committee for FLS implementation in the Korean Society for Bone and Mineral Research. In addition, we hope that the current position statement will contribute to the implementation of FLS in Korea and impel policy changes to enable a multidisciplinary and integrated FLS operated under the medical system.

Result Analysis
Print
Save
E-mail