1.Administration of Alpha(s1)-Casein Hydrolysate Increases Sleep and Modulates GABA(A) Receptor Subunit Expression.
Taddesse YAYEH ; Yea Hyun LEEM ; Kyung Mi KIM ; Jae Chul JUNG ; Jessica SCHWARZ ; Ki Wan OH ; Seikwan OH
Biomolecules & Therapeutics 2018;26(3):268-273
Sleep is the most basic and essential physiological requirement for mental health, and sleep disorders pose potential risks of metabolic and neurodegenerative diseases. Tryptic hydrolysate of α(S1)-casein (α(S1)-CH) has been shown to possess stress relieving and sleep promoting effects. However, the differential effects of α(S1)-CH on electroencephalographic wave patterns and its effects on the protein levels of γ-aminobutyric acid A (GABA(A)) receptor subtypes in hypothalamic neurons are not well understood. We found α(S1)-CH (120, 240 mg/kg) increased sleep duration in mice and reduced sleep-wake cycle numbers in rats. While α(S1)-CH (300 mg/kg) increased total sleeping time in rats, it significantly decreased wakefulness. In addition, electroencephalographic theta (θ) power densities were increased whereas alpha (α) power densities were decreased by α(S1)-CH (300 mg/kg) during sleep-wake cycles. Furthermore, protein expressions of GABA(A) receptor β1 subtypes were elevated in rat hypothalamus by α(S1)-CH. These results suggest α(S1)-CH, through GABA(A) receptor modulation, might be useful for treating sleep disorders.
Animals
;
Caseins*
;
Electroencephalography
;
Hypothalamus
;
Mental Health
;
Mice
;
Neurodegenerative Diseases
;
Neurons
;
Rats
;
Receptors, GABA-A*
;
Sleep Wake Disorders
;
Wakefulness
2.Fumonisin B1-Induced Toxicity Was Not Exacerbated in Glutathione Peroxidase-1/Catalase Double Knock Out Mice
Taddesse YAYEH ; Ha Ram JEONG ; Yoon Soo PARK ; Sohyeon MOON ; Bongjun SUR ; Hwan-Soo YOO ; Seikwan OH
Biomolecules & Therapeutics 2021;29(1):52-57
Fumonisin B1 (FB1) structurally resembles sphingolipids and interferes with their metabolism leading to sphingolipid dysregulation. We questioned if FB1 could exacerbate liver or kidney toxicities in glutathione peroxidase 1 (Gpx1) and catalase (Cat) knockout mice. While higher serum levels of thiobarbituric acid reactive substances (TBARS) and sphinganine (Sa) were measured in Gpx1/Cat knockout mice (Gpx1/Cat KO) than wild type mice after 5 days of FB1 treatment, serum levels of alanine aminotransferase (ALT), sphingosine-1 phosphate (So-1-P), and sphinganine-1 phosphate (Sa-1-P) were found to be relatively low. Although Sa was highly elevated in Gpx1/Cat KO mice and wild mice, lower levels of So and Sa were found in both the kidney and liver tissues of Gpx/Cat KO mice than wild type mice after FB1 treatment. Paradoxically, FB1-induced cellular apoptosis and necrosis were hastened under oxidative stress in Gpx1/Cat KO mice.