1.Influence of eucalyptol on biological effects of spleen cold and spleen heat syndromes in rats and mechanism of regulating spleen channel with its warm nature based on TRP ion channel.
Xing-Yu ZHAO ; Yi LI ; Xiao-Fang WU ; Qi ZHANG ; Lin-Ze LI ; Yin-Ming ZHAO ; Chun WANG ; Jian-Jun ZHANG ; Lin-Yuan WANG
China Journal of Chinese Materia Medica 2025;50(8):2022-2031
This paper aims to investigate the influence of eucalyptol on the biological effects of spleen cold and spleen heat syndromes in rats and its regulation of transient receptor potential vanilloid 1(TRPV1), transient receptor potential melastatin 8(TRPM8), and uncoupling protein 1(UCP1), so as to explore the cold-heat properties of eucalyptol. Rats were randomly divided into groups as follows: blank group, spleen cold syndrome model group, spleen cold syndrome+Atractylodis Rhizoma group, spleen cold syndrome + low-dose eucalyptol group, and spleen cold syndrome+high-dose eucalyptol group, as well as blank group, spleen heat syndrome model group, spleen heat syndrome+Coptidis Rhizoma group, spleen heat syndrome + low-dose eucalyptol group, and spleen heat syndrome + high-dose eucalyptol group. Spleen cold and spleen heat syndromes were induced by disorders of hunger and satiety combined with bitter cold drugs, as well as a high-fat diet combined with liquor. Except for the blank and model groups, the other groups were administered once a day during the modeling process for 14 consecutive days. The general condition and body weight of rats in each group were observed, and the histopathological morphology of the gastric antrum and small intestine was observed by hematoxylin-eosin(HE) staining. The contents of cyclic adenosine monophosphate(cAMP), cyclic guanosine monophosphate(cGMP), triiodothyronine(T3), thyroxine(T4), Na~+-K~+-ATPase, total cholesterol(TC), triglyceride(TG), gastrin(GAS), motilin(MTL), D-xylose, and other related indices were detected in rats. The expression levels of TRPV1, TRPM8, and UCP1 in small intestine tissue of rats with spleen cold syndrome were detected. The results showed that eucalyptol had a certain degree of improvement in the overall state and body weight of rats with spleen cold syndrome. Compared with the spleen cold syndrome model group, high-dose eucalyptol significantly increased the levels of serum cAMP, cAMP/cGMP, TG, and TC in rats with spleen cold syndrome(P<0.05, P<0.01), decreased the content of cGMP, and significantly elevated the levels of gastrointestinal function-related indicators GAS, MTL, and D-xylose(P<0.05, P<0.01). Low-dose eucalyptol significantly increased the level of cAMP/cGMP in the serum and Na~+-K~+-ATPase levels in hepatic tissue(P<0.05, P<0.01), and significantly increased the levels of GAS and D-xylose(P<0.01). Eucalyptol showed similar effects to Atractylodis Rhizoma with a warm nature on rats with spleen cold syndrome. Compared with the spleen heat syndrome model group, the high-dose and low-dose eucalyptol groups showed a trend of increase in gastrointestinal indicators, with no significant changes in other indicators. In addition, high-dose eucalyptol increased the expression of TRPV1 and UCP1 and decreased the expression of TRPM8 in the small intestine tissue of rats with spleen cold syndrome. Eucalyptol could affect the cyclic nucleotide and material energy metabolism levels of rats with spleen cold syndrome and had a certain improvement effect on their gastrointestinal digestion and absorption function, thereby improving spleen cold syndrome. Eucalyptol had no significant improvement effect on rats with spleen heat syndrome, suggesting that eucalyptol may have a warm nature and regulate spleen meridians. It is speculated that eucalyptol may exhibit its medicinal properties by activating the TRPV1 pathway, promoting the expression of UCP1, and inhibiting the TRPM8 channel.
Animals
;
Rats
;
Spleen/metabolism*
;
Male
;
TRPV Cation Channels/genetics*
;
Rats, Sprague-Dawley
;
Eucalyptol/administration & dosage*
;
TRPM Cation Channels/genetics*
;
Uncoupling Protein 1/genetics*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Cold Temperature
;
Cyclic GMP/metabolism*
2.Medicinal properties and mechanisms of p-cymene with mild and warm nature based on deficiency-cold and deficiency-heat syndrome models.
Xiao-Fang WU ; Yi LI ; Xing-Yu ZHAO ; Lin-Ze LI ; Qi ZHANG ; Yin-Ming ZHAO ; Ying-Li ZHU ; Chun WANG ; Jian-Jun ZHANG ; Lin-Yuan WANG
China Journal of Chinese Materia Medica 2025;50(8):2032-2040
This paper aims to study the effect of p-cymene on mice with deficiency-cold syndrome induced by hydrocortisone and deficiency-heat syndrome induced by dexamethasone and explore the medicinal properties and mechanism of p-cymene with mild and warm nature based on the dominant characteristics of the two-way applicable conditions of mild drugs. A total of 80 KM mice were randomly divided into blank group, deficiency-cold syndrome model group, deficiency-cold syndrome + ginseng group, and deficiency-cold syndrome + low-dose and high-dose p-cymene groups, as well as blank group, deficiency-heat syndrome model group, deficiency-heat syndrome + American ginseng group, and deficiency-heat syndrome + low-dose and high-dose p-cymene groups. Hydrocortisone and dexamethasone solution were intragastrically administered for 14 consecutive days to prepare deficiency-cold syndrome and deficiency-heat syndrome models. Except for the blank group and the model group intragastrically administered with normal saline, the other groups were intragastrically administrated with drugs for 14 days. The levels of cyclic adenosine monophosphate(cAMP), cyclic guanosine monophosphate(cGMP), triiodothyronine(T3), thyroxine(T4), total cholesterol(TC), triglyceride(TG), immunoglobin G(IgG), and immunoglobin M(IgM) in serum, as well as the activity of Na~+-K~+-ATPase in liver tissue were detected. The expression of transient receptor potential melastatin 8(TRPM8), transient receptor potential vanilloid 1(TRPV1), and uncoupling protein 1(UCP1) in brown adipose tissue of deficiency-cold syndrome model after intervention with p-cymene was studied. The results showed that p-cymene could effectively improve the levels of cAMP, cAMP/cGMP, TC, IgM, and IgG in serum and the activity of Na~+-K~+-ATPase in liver tissue of mice with deficiency-cold syndrome and reduce the content of cGMP. The effects on T3, T4, and TG were not statistically significant. At the same time, p-cymene could reduce the levels of cAMP, cAMP/cGMP, and T4 in serum and the activity of Na~+-K~+-ATPase in liver tissue of mice with deficiency-cold syndrome and increase the levels of cGMP, IgM, and IgG, and it had no effect on T3, TC, and TG. In addition, p-cymene could up-regulate the expression of TRPV1 and UCP1 in brown fat of mice with deficiency-cold syndrome and down-regulate the expression of TRPM8. In summary, p-cymene could significantly regulate the syndrome indexes of mice with deficiency-cold syndrome, and some indexes of mice with deficiency-heat syndrome could be improved, but the effects on lipid metabolism and energy metabolism indexes were not obvious, indicating that the regulation effect of p-cymene on deficiency-cold syndrome model was more prominent and that the medicinal properties of p-cymene were mild and warm. The regulation of TRPV1/TRPM8/UCP1 channel expression may be the molecular biological mechanism of p-cymene with mild and warm nature affecting the energy metabolism of the body.
Animals
;
Cymenes
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Disease Models, Animal
;
Humans
;
Cyclic AMP/metabolism*
;
Monoterpenes/administration & dosage*
;
Liver/metabolism*
;
Cyclic GMP/metabolism*
;
TRPV Cation Channels/genetics*
;
Uncoupling Protein 1/genetics*
3.Identification of critical quality attributes related to property and flavor of Jianwei Xiaoshi Tablets based on T1R2/T1R3/TRPV1-HEMT biosensor.
Dong-Hong LIU ; Yan-Yu HAN ; Jing WANG ; Hai-Yang LI ; Xin-Yu GUO ; Hui-Min FENG ; Han HE ; Shuo-Shuo XU ; Zhi-Jian ZHONG ; Zhi-Sheng WU
China Journal of Chinese Materia Medica 2025;50(14):3930-3937
The quality of traditional Chinese medicine(TCM) is a critical foundation for ensuring the stability of its efficacy, as well as the safety and effectiveness of its clinical use. The identification of critical quality attributes(CQAs) is one of the core components of TCM preparation quality control. This study focuses on Jianwei Xiaoshi Tablets and explores their CQAs related to property and flavor from the perspective of taste receptor proteins. Three taste receptor proteins, T1R2, T1R3, and TRPV1, were selected, and a biosensor based on high-electron-mobility transistor(HEMT) was constructed to detect the interactions between Jianwei Xiaoshi Tablets and taste receptor proteins. Simultaneously, liquid chromatography-mass spectrometry(LC-MS) technology was used to analyze the chemical composition of Jianwei Xiaoshi Tablets. In examining the interaction strength, the results indicated that the interaction between Jianwei Xiaoshi Tablets and TRPV1 protein was the strongest, followed by T1R3, with the interaction with T1R2 being relatively weaker. By combining biosensing technology with LC-MS, 16 chemical components were identified from Jianwei Xiaoshi Tablets, among which six were selected as CQAs for sweetness and seven for pungency. Further validation experiments demonstrated that CQAs such as hesperidin and hesperetin had strong interactions with their corresponding taste receptor proteins. Through the combined use of multiple technological approaches, this study successfully determined the property and flavor-related CQAs of Jianwei Xiaoshi Tablets. It provides novel ideas and approach for the identification of CQAs in TCM preparations and offers comprehensive theoretical support for TCM quality control, contributing to the improvement and development of TCM preparation quality control systems.
Drugs, Chinese Herbal/chemistry*
;
Biosensing Techniques/methods*
;
TRPV Cation Channels/chemistry*
;
Tablets/chemistry*
;
Receptors, G-Protein-Coupled/genetics*
;
Quality Control
;
Taste
;
Humans
;
Mass Spectrometry
4.Sangma Zhike Formula alleviates airway inflammation and hyperresponsiveness in rats with postinfectious cough by inhibiting the TRPV1-SP/CGRP and pyroptosis pathways.
Qinjun YANG ; Hongyu ZHU ; Yuan GAO ; Cheng YANG ; Tong LIU ; Lu ZHANG ; Jiabing TONG ; Zegeng LI
Journal of Southern Medical University 2025;45(9):1830-1839
OBJECTIVES:
To investigate the therapeutic mechanism of Sangma Zhike Formula (SMZKF) for relieving cough sensitivity and airway inflammation in rats with postinfectious cough (PIC).
METHODS:
Male SD rat models were established by cigarette smoke exposure with intranasal LPS instillation and capsaicin aerosol inhalation. From day 19 following the start of PIC modeling, the rats received daily treatment with saline (model group), low-, medium-, and high-dose SMZKF, and compound methoxyphenamine (ASM) via gavage for 10 consecutive days (n=8). The assessments included behavioral changes, cough sensitivity (latency and frequency), lung histopathology, inflammatory cell counts and cytokine/mediator levels in the bronchoalveolar lavage fluid (BALF), oxidative stress markers in the lung tissue, and expressions of proteins related with cough hypersensitivity and pyroptosis.
RESULTS:
The rat models of PIC exhibited reduced mental alertness, accelerated respiration, and pronounced symptoms such as coughing, sneezing, and facial scratching with significantly shortened cough latency and increased 5-min cough frequency. Histopathological analysis revealed collapsed alveolar structures, thickened alveolar septa, and extensive inflammatory cell infiltration in the bronchi and peribronchial regions, accompanied by elevated bronchial and alveolar inflammation scores of the rat models. In the BALF, inflammatory cell counts and the levels of IL-1β, TNF-α, IL-6, COX-2, PGE-2, and TXA-2 were all markedly elevated, and the pulmonary oxidative stress markers (ROS and MDA) and myeloperoxidase (MPO) activity were also significantly increased. The pulmonary expressions of cough hypersensitivity-related proteins (TRPV1, SP, CGRP, and NK1R) and pyroptosis-associated markers (P-NF-κB, NLRP3, ACS, cleaved caspase-1, cleaved IL-1β, and GSDMD-N) were significantly upregulated in the model group. SMZKF interventions significantly ameliorated these pathological changes in the rat models, and high-dose SMZKF produced a similar therapeutic efficacy to that of ASM.
CONCLUSIONS
SMZKF alleviates cough sensitivity and airway inflammation in PIC rats possibly by inhibiting TRPV1-mediated SP/NK1R signaling and the NLRP3/caspase-1/GSDMD pyroptosis pathway.
Animals
;
Cough/metabolism*
;
Rats, Sprague-Dawley
;
Pyroptosis/drug effects*
;
Male
;
TRPV Cation Channels/metabolism*
;
Rats
;
Drugs, Chinese Herbal/pharmacology*
;
Inflammation
;
Signal Transduction
5.Functional and distinct roles of Piezo2-mediated mechanotransduction in dental primary afferent neurons.
Pa Reum LEE ; Kihwan LEE ; Ji Min PARK ; Shinae KIM ; Seog Bae OH
International Journal of Oral Science 2025;17(1):45-45
Piezo2, a mechanosensitive ion channel, serves as a crucial mechanotransducer in dental primary afferent (DPA) neurons and is potentially involved in hypersensitivity to mild mechanical irritations observed in dental patients. Given Piezo2's widespread expression across diverse subpopulations of DPA neurons, this study aimed to characterize the mechanosensory properties of Piezo2-expressing DPA neurons with a focus on distinct features of voltage-gated sodium channels (VGSCs) and neuropeptide profiles. Using whole-cell patch-clamp recordings, we observed mechanically activated action potentials (APs) and classified AP waveforms based on the presence or absence of a hump during the repolarization phase. Single-cell reverse transcription polymerase chain reaction combined with patch-clamp recordings revealed specific associations between AP waveforms and molecular properties, including tetrodotoxin-resistant VGSCs (NaV1.8 and NaV1.9) and TRPV1 expression. Reanalysis of the transcriptomic dataset of DPA neurons identified correlations between neuropeptides-including two CGRP isoforms (α-CGRP and β-CGRP), Substance P, and Galanin-and the expression of NaV1.8 and NaV1.9, which were linked to defined AP subtypes. These molecular associations were further validated in Piezo2+ DPA neurons using fluorescence in situ hybridization. Together, these findings highlight the electrophysiological and neurochemical heterogeneity of Piezo2-expressing DPA neurons and their specialized roles in distinct mechanosensory signal transmission.
Ion Channels/physiology*
;
Mechanotransduction, Cellular/physiology*
;
Animals
;
Neurons, Afferent/metabolism*
;
Patch-Clamp Techniques
;
Mice
;
TRPV Cation Channels/metabolism*
;
Action Potentials
;
Rats
6.Improvement effect of Shegan Mahuang Decoction on rats with cold-induced asthma based on TRPV1/NRF-1/mtTFA pathway.
Qiu-Hui LI ; Xiao-Xiao SHAN ; Xiao-Ying LIU ; Wei-Dong YE ; Ya-Mei YUAN ; Xun-Yan YIN ; Xiang-Ming FANG
China Journal of Chinese Materia Medica 2023;48(23):6414-6422
This study investigated the therapeutic effect of Shegan Mahuang Decoction(SGMHD) on cold-induced asthma in rats and explored its underlying mechanism. Seventy-two healthy male SD rats of specific pathogen free(SPF) grade were randomly divided into a blank group, a model group, a positive control group(dexamethasone, 0.4 mg·kg~(-1)), and low-, medium-, and high-dose SGMHD groups(3.2, 6.4, and 12.8 g·kg~(-1)). The blank group received saline, while the other groups were sensitized by intraperitoneal injection of ovalbumin(OVA) solution. Subsequently, the rats were placed in a cold chamber adjustable to 0-2 ℃, and OVA solution was ultrasonically nebulized to induce cold-induced asthma in rats. After three weeks of treatment, the general behaviors of rats were observed. Hematoxylin-eosin(HE) staining was used to evaluate pathological changes in lung tissues, periodic acid-Schiff(PAS) staining assessed mucin changes, and Masson staining was performed to examine collagen deposition. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of the inflammatory factors interleukin-4(IL-4) and vascular endothelial growth factor(VEGF) in serum and bronchoalveolar lavage fluid(BALF). Real-time quantitative polymerase chain reaction(RT-PCR) was employed to assess the mRNA expression levels of transient receptor potential vanilloid subfamily member 1(TRPV1), nuclear respiratory factor 1(NRF-1), and mitochondrial transcription factor A(mtTFA) in lung tissues. Western blot was used to measure the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues. Compared with the blank group, the model group exhibited signs of rapid respiration, increased frequency of defecation with looser stools, and disheveled and dull fur. Pathological results showed significant infiltration of inflammatory cells in lung tissues, narrowing of bronchial lumens, increased mucin secretion, and enhanced collagen deposition in the model group. Additionally, the levels of IL-4 and VEGF in serum and BALF were significantly elevated, and the mRNA and protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were significantly increased. Compared with the model group, SGMHD improved the behaviors of rats, alleviated pathological changes in lung tissues, mucin production, and collagen deposition, significantly decreased the levels of IL-4 and VEGF in serum and BALF, and reduced the mRNA expression levels of TRPV1, NRF-1, and mtTFA in lung tissues, with the medium-dose SGMHD group showing the most significant effect. Moreover, the protein expression levels of TRPV1, NRF-1, and mtTFA in lung tissues were also reduced, with the medium-dose SGMHD group exhibiting the most significant effect. In conclusion, this study demonstrates that SGMHD can alleviate airway inflammation and inhibit airway remodeling in cold-induced asthma rats. These effects may be associated with the modulation of the TRPV1/NRF-1/mtTFA signaling pathway.
Rats
;
Male
;
Animals
;
Mice
;
Interleukin-4/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Rats, Sprague-Dawley
;
Asthma/genetics*
;
Lung
;
Bronchoalveolar Lavage Fluid
;
RNA, Messenger/metabolism*
;
Collagen/metabolism*
;
Mucins/therapeutic use*
;
Ovalbumin
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
TRPV Cation Channels/metabolism*
;
Drugs, Chinese Herbal
7.Research progress of chondrocyte mechanotransduction mediated by TRPV4 and PIEZOs.
Qiang ZHANG ; K Tawiah GODFRED ; Yanjun ZHANG ; Xiaochun WEI ; Weiyi CHEN ; Quanyou ZHANG
Journal of Biomedical Engineering 2023;40(4):638-644
Mechanical signal transduction are crucial for chondrocyte in response to mechanical cues during the growth, development and osteoarthritis (OA) of articular cartilage. Extracellular matrix (ECM) turnover regulates the matrix mechanical microenvironment of chondrocytes. Thus, understanding the mechanotransduction mechanisms during chondrocyte sensing the matrix mechanical microenvironment can develop effective targeted therapy for OA. In recent decades, growing evidences are rapidly advancing our understanding of the mechanical force-dependent cartilage remodeling and injury responses mediated by TRPV4 and PIEZOs. In this review, we highlighted the mechanosensing mechanism mediated by TRPV4 and PIEZOs during chondrocytes sensing mechanical microenvironment of the ECM. Additionally, the latest progress in the regulation of OA by inflammatory signals mediated by TRPV4 and PIEZOs was also introduced. These recent insights provide the potential mechanotheraputic strategies to target these channels and prevent cartilage degeneration associated with OA. This review will shed light on the pathogenesis of articular cartilage, searching clinical targeted therapies, and designing cell-induced biomaterials.
Chondrocytes
;
TRPV Cation Channels
;
Mechanotransduction, Cellular
;
Biocompatible Materials
;
Cartilage, Articular
8.Preliminary study of TRPV4 affects chondrocyte degeneration.
Xue SHEN ; Hu ZHANG ; De-Ta CHEN ; Yue-Long CAO
China Journal of Orthopaedics and Traumatology 2023;36(10):990-995
OBJECTIVE:
To explore and verify that transient receptor potential vanilloid 4(TRPV4) affects chondrocyte degeneration.
METHODS:
Neonatal SD rats were selected, primary chondrocytes were extracted, and identified by toluidine blue staining and alcian blue staining;an in vitro chondrocyte inflammation model was constructed by IL-1β, and TRPV4 inhibitor was used to treat chondrocytes under inflammatory conditions, and the chondrocytes were treated by RT-PCR method was used to detect matrix metallopeptidase 13(MMP-13), a disintegrin and metalloproteinase with thrombospondin 5, (ADAMTS-5)、nitric oxide synthase 2(NOS2)、Collagen, type II alpha 1(Col2α1)and aggrecan (Acan) mRNA in chondrocytes; primary chondrocytes were treated with different concentrations of TRPV4 overexpression plasmid, and the optimal overexpression dose was screened. The mRNA expressions of TRPV4, MMP-13, ADAMTS-5, NOS2, Col2α1 and Acan in chondrocytes under the optimal TRPV4 overexpression dose were detected.
RESULTS:
Toluidine blue staining and Alcian blue staining identified the extracted cells as primary chondrocytes;RT-PCR showed that TRPV4, MMP-13, ADAMTS-5, NOS2 mRNA in chondrocytes treated with TRPV4 inhibitor under inflammatory conditions. The expression of Col2α1 mRNA was significantly decreased (P<0.05), and the expression of Col2α1 mRNA was increased (P<0.05). Although there was no significant difference in the expression of Acan mRNA, the overall trend was also increasing. The expression of Col2α1 and Acan mRNA in chondrocytes was significantly decreased (P<0.05), and the expression of NOS2 mRNA was increased(P<0.05), but there was no significant difference in MMP-13 and ADAMTS-5 (P>0.05).
CONCLUSION
Inhibiting the expression of TRPV4 can down-regulate the expression of genes related to chondrocyte degeneration.
Animals
;
Rats
;
Aggrecans/metabolism*
;
Cartilage, Articular
;
Cells, Cultured
;
Chondrocytes
;
Interleukin-1beta/metabolism*
;
Matrix Metalloproteinase 13/metabolism*
;
Rats, Sprague-Dawley
;
RNA, Messenger/metabolism*
;
TRPV Cation Channels/metabolism*
9.TRPV1 participates in the protective effect of propolis on colonic tissue of ulcerative colitis.
Jing WANG ; Zhen QIAN ; Taiyu LU ; Ruirui LI ; Hui LI ; Hao ZHANG ; Li SUN ; Haihua WANG
Journal of Central South University(Medical Sciences) 2023;48(2):182-190
OBJECTIVES:
Ulcerative colitis (UC) is a type of inflammatory bowel disease (IBD) mainly characterized by inflammation, ulceration and erosion of colonic mucosa and submucosa. Transient receptor potential vanilloid 1 (TRPV1) is an important mediator of visceral pain and inflammatory bowel disease. This study aims to investigate the protective effect of water soluble propolis (WSP) on UC colon inflammatory tissue and the role of TRPV1.
METHODS:
Male SD rats were randomly divided into 6 groups (n=8): a normal control (NC) group, an ulcerative colitis model (UC) group, a low-WSP (L-WSP) group, a medium-WSP (M-WSP) group, a high-WSP (H-WSP) group, and a salazosulfapyridine (SASP) group. The rats in the NC group drank water freely, and the other groups drank 4% dextran sulfate sodium (DSS) solution freely for 7 d to replicate the ulcerative colitis model. Based on the successful replication of the UC, the L-WSP, M-WSP, and H-WSP groups were given 50, 100, and 200 mg/kg of water-soluble propolis by gavage for 7 d, and the SASP group was given 100 mg/kg of sulfasalazine by gavage for 7 d. The body weight of rats in each group was measured at the same time every day, the fecal traits and occult blood were observed to record the disease activity index (DAI). After intragastric administration, the animals were sacrificed after fasted 24 h. Serum and colonic tissue were collected, and the changes of MDA, IL-6 and TNF-α were detected. The pathological changes of colon tissues were observed by HE staining, and the expression of TRPV1 in colon tissues was observed by Western blotting, immunohistochemistry, and immunofluorescence.
RESULTS:
The animals in each group that drank DSS freely showed symptoms such as weight loss, decreased appetite, depressed state, and hematochezia, indicating that the model was successfully established. Compared with the NC group, DAI scores of other groups were increased (all P<0.05). MDA, IL-6, TNF-α in serum and colon tissues of the UC group were increased compared with the NC group (all P<0.01), and they were decreased after WSP and SASP treatment (all P<0.01). The results of showed that the colon tissue structure was obviously broken and inflammatory infiltration in the UC group, while the H-WSP group and the SASP group significantly improved the colon tissue and alleviated inflammatory infiltration. The expression of TRPV1 in colon tissues in the UC group was increased compared with the NC group (all P<0.01), and it was decreased after WSP and SASP treatment.
CONCLUSIONS
WSP can alleviate the inflammatory state of ulcerative colitis induced by DSS, which might be related to the inhibition of inflammatory factors release, and down-regulation or desensitization of TRPV1.
Animals
;
Male
;
Rats
;
Antineoplastic Agents/therapeutic use*
;
Colitis, Ulcerative/chemically induced*
;
Colon/pathology*
;
Disease Models, Animal
;
Interleukin-6/pharmacology*
;
Propolis/therapeutic use*
;
Rats, Sprague-Dawley
;
Sulfasalazine/therapeutic use*
;
TRPV Cation Channels
;
Tumor Necrosis Factor-alpha/pharmacology*
10.TRPV4-induced Neurofilament Injury Contributes to Memory Impairment after High Intensity and Low Frequency Noise Exposures.
Yang YANG ; Ju WANG ; Yu Lian QUAN ; Chuan Yan YANG ; Xue Zhu CHEN ; Xue Jiao LEI ; Liang TAN ; Hua FENG ; Fei LI ; Tu Nan CHEN
Biomedical and Environmental Sciences 2023;36(1):50-59
OBJECTIVE:
Exposure to high intensity, low frequency noise (HI-LFN) causes vibroacoustic disease (VAD), with memory deficit as a primary non-auditory symptomatic effect of VAD. However, the underlying mechanism of the memory deficit is unknown. This study aimed to characterize potential mechanisms involving morphological changes of neurons and nerve fibers in the hippocampus, after exposure to HI-LFN.
METHODS:
Adult wild-type and transient receptor potential vanilloid subtype 4 knockout (TRPV4-/-) mice were used for construction of the HI-LFN injury model. The new object recognition task and the Morris water maze test were used to measure the memory of these animals. Hemoxylin and eosin and immunofluorescence staining were used to examine morphological changes of the hippocampus after exposure to HI-LFN.
RESULTS:
The expression of TRPV4 was significantly upregulated in the hippocampus after HI-LFN exposure. Furthermore, memory deficits correlated with lower densities of neurons and neurofilament-positive nerve fibers in the cornu ammonis 1 (CA1) and dentate gyrus (DG) hippocampal areas in wild-type mice. However, TRPV4-/- mice showed better performance in memory tests and more integrated neurofilament-positive nerve fibers in the CA1 and DG areas after HI-LFN exposure.
CONCLUSION
TRPV4 up-regulation induced neurofilament positive nerve fiber injury in the hippocampus, which was a possible mechanism for memory impairment and cognitive decline resulting from HI-LFN exposure. Together, these results identified a promising therapeutic target for treating cognitive dysfunction in VAD patients.
Animals
;
Mice
;
TRPV Cation Channels/metabolism*
;
Intermediate Filaments/metabolism*
;
Hippocampus/metabolism*
;
Neurons/metabolism*
;
Memory Disorders/metabolism*

Result Analysis
Print
Save
E-mail