1.Human skeletal dysplasia caused by a constitutive activated transient receptor potential vanilloid 4 (TRPV4) cation channel mutation.
Sang Sun KANG ; Sung Hwa SHIN ; Chung Kyoon AUH ; Jaesun CHUN
Experimental & Molecular Medicine 2012;44(12):707-722
The transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, is expressed in a broad range of tissues where it participates in the generation of Ca2+ signals and/or depolarization of the membrane potential. Regulation of TRPV4 abundance at the cell surface is critical for osmo- and mechanotransduction. Defects in TRPV4 are the cause of several human diseases, including brachyolmia type 3 (MIM:113500) (also known as brachyrachia or spondylometaphyseal dysplasia Kozlowski type [MIM:118452]), and metatropic dysplasia (MIM:156530) (also called metatropic dwarfism or parastremmatic dwarfism [MIM:168400]). These bone dysplasia mutants are characterized by severe dwarfism, kyphoscoliosis, distortion and bowing of the extremities, and contractures of the large joints. These diseases are characterized by a combination of decreased bone density, bowing of the long bones, platyspondyly, and striking irregularities of endochondral ossification with areas of calcific stippling and streaking in radiolucent epiphyses, metaphyses, and apophyses. In this review, we discuss the potential effect of the mutation on the regulation of TRPV4 functions, which are related to human diseases through deviated function. In particular, we emphasize how the constitutive active TRPV4 mutant affects endochondral ossification with a reduced number of hypertrophic chondrocytes and the presence of cartilage islands within the zone of primary mineralization. In addition, we summarize current knowledge about the role of TRPV4 in the pathogenesis of several diseases.
Humans
;
*Mutation
;
Osteochondrodysplasias/*genetics
;
Osteogenesis/genetics
;
TRPV Cation Channels/chemistry/*genetics/metabolism
2.Anti-inflammatory: effect mechanism of warming-dredging in moxibustion.
Jin-Feng JIANG ; Ling-Ling WANG ; Xu BIN ; Hu LING ; Xiao-Ge SONG ; Huan-Gan WU
Chinese Acupuncture & Moxibustion 2013;33(9):860-864
The universality of anti-inflammation in moxibustion is analyzed in this article from its adaptation disease and ancient documentary records. The specificity of anti-inflammation in moxibustion is pointed out from its disease series research and scientific fact that moxibustion could be used for heat syndrome. The integrity of anti-inflammation in moxibustion is explained by series research result that four basic circulations of moxibustion for chronic inflammation are all effective. The two-way characteristic of moxibustion anti-inflammation is explained from the fact that moxibustion has regulation function both for excess and insufficiency of inflammation to demonstrate the effect mechanism of warming-dredging in moxibustion lies in its anti-inflammation. At last, the relevant possible mechanism between moxibustion anti-inflammation and transient receptor potential vanilloid (TRPV) is proposed. The effect mechanism of warming-dredging in moxibustion lies in anti-inflammation, which could provide theoretic basis for prevention and treatment of moxibustion for serious diseases.
Animals
;
Humans
;
Inflammation
;
genetics
;
immunology
;
therapy
;
Moxibustion
;
instrumentation
;
methods
;
TRPV Cation Channels
;
genetics
;
immunology
3.Analysis of clinical feature and genetic basis of a rare case with Olmsted syndrome.
Jian LU ; Rong HU ; Ling LIU ; Hongke DING
Chinese Journal of Medical Genetics 2021;38(7):674-677
OBJECTIVE:
To analyze the clinical and genetic characteristics of a patient featuring autosomal dominant Olmsted syndrome.
METHODS:
Clinical features of the patient was reviewed. High-throughput sequencing was carried out to detect potential genetic variants.
RESULTS:
The proband, a 12-year-old girl, featured excessive keratinization on hands and feet, contracture of finger joints, and abnormal position and residual contraction of the fifth toes. Skin biopsy showed significant hyperkeratosis, epidermal hyperplasia, and mild interepidermal cell edema. A de novo heterozygous missense variant c.2016G>T(p.Met672Ile) was identified in the TRPV3 gene by high-throughout sequencing. The result was verified by Sanger sequencing.
CONCLUSION
The destructive palmoplantar keratosis in the child may be attributed to the c.2016G>T(p.Met672Ile) variant of the TRPV3 gene. Aboving finding has provided new evidence for the correlation of genetic variants with clinical phenotypes of Olmsted syndrome.
Child
;
Female
;
Heterozygote
;
Humans
;
Keratoderma, Palmoplantar/genetics*
;
Skin
;
Syndrome
;
TRPV Cation Channels/genetics*
4.Understand spiciness: mechanism of TRPV1 channel activation by capsaicin.
Protein & Cell 2017;8(3):169-177
Capsaicin in chili peppers bestows the sensation of spiciness. Since the discovery of its receptor, transient receptor potential vanilloid 1 (TRPV1) ion channel, how capsaicin activates this channel has been under extensive investigation using a variety of experimental techniques including mutagenesis, patch-clamp recording, crystallography, cryo-electron microscopy, computational docking and molecular dynamic simulation. A framework of how capsaicin binds and activates TRPV1 has started to merge: capsaicin binds to a pocket formed by the channel's transmembrane segments, where it takes a "tail-up, head-down" configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by "pull-and-contact" with the S4-S5 linker. Understanding the ligand-host interaction will greatly facilitate pharmaceutical efforts to develop novel analgesics targeting TRPV1.
Binding Sites
;
Capsaicin
;
chemistry
;
pharmacokinetics
;
Humans
;
Hydrogen Bonding
;
Protein Binding
;
TRPV Cation Channels
;
chemistry
;
genetics
;
metabolism
5.TRPV4 channel mediates the increase of pulmonary microvascular endothelial permeability in rats with chronic hypoxic pulmonary hypertension.
Hai-Xia JIAO ; Sheng-Xia YUAN ; Yan-Zhen HUANG ; Qiao-Wen SU ; Rui-Lan HE ; Zhi-Juan WU ; Mo-Jun LIN
Acta Physiologica Sinica 2021;73(6):867-877
The purpose of the present study was to investigate the effect of transient receptor potential vanilloid 4 (TRPV4) channel on the permeability of pulmonary microvascular endothelial cells (PMVECs) in rats with chronic hypoxia-induced pulmonary hypertension (CHPH), so as to clarify the mechanism of vascular endothelial dysfunction during the occurrence of pulmonary hypertension (PH). CHPH rat model was established by exposure to chronic hypoxia (CH) for 21 days. Primary PMVECs were cultured by adherent tissue blocks at the edge of the lung. The permeability coefficient of primary cultured PMVECs was detected by fluorescein isothiocyanate (FITC)-dextran. The structure of tight junction (TJ) was observed by transmission electron microscope. The expression of TRPV4 and TJ-related proteins, such as, Occludin, Claudin-5, ZO-1 were examined by real-time fluorescence quantitative PCR and Western blotting. The intracellular calcium concentration ([Ca
Animals
;
Endothelial Cells
;
Hypertension, Pulmonary
;
Hypoxia/complications*
;
Lung
;
Permeability
;
Rats
;
TRPV Cation Channels/genetics*
6.Expression of transient receptor potential subfamily mRNAs in rat testes.
Zhan-Ping XU ; Wei-Cheng GAO ; Huai-Peng WANG ; Xing-Huan WANG
Journal of Southern Medical University 2009;29(3):519-520
OBJECTIVETo study the expression of the mRNAs of transient receptor potential (TRP) gene subfamily TRPV and TRPM in rat testes.
METHODSNormal SD rat testes were collected and the expression of TRPV and TRPM mRNAs were detected by routine RT-PCR.
RESULTSThe TRPV4, TRPV5, TRPV6, TRPM3, TRPM4 and TRPM8 mRNAs were detected in the rat testes, but the other members of TRPV and TRPM family were not detected.
CONCLUSIONSTRPV4, TRPV5, TRPV6, TRPM3, TRPM4 and TRPM8 are expressed in rat testes. This finding provides the basis for exploring the functions of TRPV and TRPM in the testes and the relation between testis diseases and the TRP family.
Animals ; Male ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; TRPM Cation Channels ; genetics ; metabolism ; TRPV Cation Channels ; genetics ; metabolism ; Testis ; metabolism
7.Expression of TRPM and TRPV channel family mRNA in rat spermatogenic cells.
Shi-lin LI ; Xing-huan WANG ; Huai-peng WANG ; Zhong-hua YANG ; Wei-cheng GAO ; Xiao-yong PU
Journal of Southern Medical University 2008;28(12):2150-2153
OBJECTIVETo investigate the expression of transient receptor potential melastatin (TRPM) and transient receptor potential vanilloid (TRPV) channel family genes in rat spermatogenic cells.
METHODSRat spermatogenic cells were isolated by a mechanical procedure and the total RNA was extracted using TRIzol reagent. TRPM and TRPV channel family genes were amplified by RT-PCR and the presence of the target genes was detected by agarose gel electrophoresis. The relative gene expression levels were measured by real-time quantitative RT-PCR.
RESULTSTRPV5, TRPM3, TRPM4 and TRPM7 mRNAs were expressed in rat spermatogenic cells, but TRPV1, TRPV2, TRPV3, TRPV4, TRPV6, TRPM1, TRPM2, TRPM5, TRPM6, TRPM7 and TRPM8 mRNAs were not detected. The relative expressions of TRPM and TRPV mRNA were determined by quantitative real-time RT-PCR. TRPM7 expression was the highest among all the TRPM subtypes in rat spermatogenic cells, at a level equivalent to (0.0430-/+0.0034)% of beta-actin expression. TRPM3 and TRPM4 were also highly expressed, but their expression levels were only approximately 56% and 63% of that of TRPM7, respectively. For the TRPV subfamily, only TRPV5 mRNA was abundantly expressed at the level of (0.0157-/+0.0029)% relative to that of beta-actin.
CONCLUSIONTRPV5, TRPM3, TRPM4 and TRPM7 mRNAs were coexpressed in spermatogenic cells in rats, among which TRPM4 and TRPM7 mRNA were expressed at high levels. TRPM4 and TRPM7 channels may be involved in the regulation of growth, differentiation and maturation of rat spermatogenic cells and are associated with the generation of the sperms.
Animals ; Male ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; Spermatocytes ; cytology ; metabolism ; Spermatogonia ; cytology ; metabolism ; TRPM Cation Channels ; genetics ; metabolism ; TRPV Cation Channels ; genetics ; metabolism
8.Effects of ingredients from Chinese herbs with nature of cold or hot on expression of TRPV1 and TRPM8.
Feng SUI ; Na YANG ; Changbin ZHANG ; Xinliang DU ; Lanfang LI ; Xiaogang WENG ; Shuying GUO ; Hairu HUO ; Tingliang JIANG
China Journal of Chinese Materia Medica 2010;35(12):1594-1598
OBJECTIVETo study the effects of the ingredients from Chinese herbs with the nature of cold or hot on the expression of TRPV1 and TRPM8.
METHODThe effects of ingredients from herbs on primary culture DRG neurons are observed in vitro. The expression quantity of gene is detected by the method of real time PCR. the 2 (-deltadeltaCT) method is applied to analyze the data.
RESULTIngredients from herbs with the nature of cold up-regulate the expression level of TRPV1 and down-regulate that of TRPM8, especially under the temperature condition of 39 degrees C; while ingredients from herbs with the nature of hot up-regulate the expression level of TRPM8 and down-regulated that of TRPV1, which is more significant under the temperature condition of 19 degrees C.
CONCLUSIONThe regulatory changes of TRPV1 and TRPM8 mRNA expression induced by the chemical ingredients might be related to the cold and hot natures of the herbs from which the ingredients are extracted. And this could be one of the therapeutic mechanisms for the treatment of Chinese herbal medicines to cold- and heat-related diseases.
Animals ; Drugs, Chinese Herbal ; administration & dosage ; analysis ; Gene Expression ; drug effects ; Male ; Rats ; Rats, Sprague-Dawley ; TRPM Cation Channels ; genetics ; metabolism ; TRPV Cation Channels ; genetics ; metabolism
9.Olmsted Syndrome Caused by a Heterozygous p.Gly568Val Missense Mutation in TRPV3 Gene.
Ji Young CHOI ; Song Ee KIM ; Sang Eun LEE ; Soo Chan KIM
Yonsei Medical Journal 2018;59(2):341-344
Olmsted syndrome (OS) is a rare congenital skin disorder characterized by severe palmoplantar and periorificial keratoderma, alopecia, onychodystrophy, and severe pruritus. Recently, pathogenic ‘gain-of-function‘ mutations of the transient receptor potential vanilloid 3 gene (TRPV3), which encodes a cation channel involved in keratinocyte differentiation and proliferation, hair growth, inflammation, pain and pruritus, have been identified to cause OS. Due to the rarity, the pattern of inheritance of OS is still unclear. We report a case of OS in a 3-year-old Korean girl and its underlying gene mutation. The patient presented with a disabling, bilateral palmoplantar keratoderma with onychodystrophy. She also exhibited pruritic eczematous skin lesions around her eyes, ears and gluteal fold. Genetic analysis identified a heterozygous p.Gly568Val missense mutation in the exon 13 of TRPV3. To our knowledge, this is the first case of OS in the Korean population showing a missense mutation p.Gly573Ser.
Abnormalities, Multiple/*genetics
;
Base Sequence
;
Child, Preschool
;
Female
;
Heterozygote
;
Humans
;
Keratoderma, Palmoplantar/genetics
;
Lipid Droplets/ultrastructure
;
Mutation, Missense/*genetics
;
Skin/pathology/ultrastructure
;
Syndrome
;
TRPV Cation Channels/*genetics
10.Distribution profiles of transient receptor potential melastatin-related and vanilloid-related channels in prostatic tissue in rat.
Huai-Peng WANG ; Xiao-Yong PU ; Xing-Huan WANG
Asian Journal of Andrology 2007;9(5):634-640
AIMTo investigate the expression and distribution of the members of the transient receptor potential (TRP) channel members of TRP melastatin (TRPM) and TRP vanilloid (TRPV) subfamilies in rat prostatic tissue.
METHODSProstate tissue was obtained from male Sprague-Dawley rats. Reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time polymerase chain reaction (PCR) were used to check the expression of all TRPM and TRPV channel members with specific primers. Immunohistochemistry staining for TRPM8 and TRPV1 were also performed in rat tissues.
RESULTSTRPM2, TRPM3, TRPM4, TRPM6, TRPM7, TRPM8, TRPV2 and TRPV4 mRNA were detected in all rat prostatic tissues. Very weak signals for TRPM1, TRPV1 and TRPV3 were also detected. The mRNA of TRPM5, TRPV5 and TRPV6 were not detected in all RT-PCR experiments. Quantitative real-time RT-PCR showed that TRPM2, TRPM3, TRPM4, TRPM8, TRPV2 and TRPV4 were the most abundantly expressed TRPM and TRPV subtypes, respectively. Fluorescence immunohistochemistry indicated that TRPM8 and TRPV1 are highly expressed in both epithelial and smooth muscle cells.
CONCLUSIONOur results demonstrate that mRNA or protein for TRPM1, TRPM2, TRPM3, TRPM4, TRPM6, TRPM7, TRPM8, TRPV1, TRPV2, TRPV3 and TRPV4 exist in rat prostatic tissue. The data presented here assists in elucidating the physiological function of TRPM and TRPV channels.
Animals ; Clusterin ; genetics ; physiology ; Immunohistochemistry ; Male ; Prostate ; physiology ; RNA, Messenger ; genetics ; Rats ; Reverse Transcriptase Polymerase Chain Reaction ; TRPV Cation Channels ; genetics ; physiology