1.Amoebic PI3K and PKC Is Required for Jurkat T Cell Death Induced by Entamoeba histolytica.
Young Ah LEE ; Kyeong Ah KIM ; Arim MIN ; Myeong Heon SHIN
The Korean Journal of Parasitology 2014;52(4):355-365
The enteric protozoan parasite Entamoeba histolytica is the causative agent of human amebiasis. During infection, adherence of E. histolytica through Gal/GalNAc lectin on the surface of the amoeba can induce caspase-3-dependent or -independent host cell death. Phosphorylinositol 3-kinase (PI3K) and protein kinase C (PKC) in E. histolytica play an important function in the adhesion, killing, or phagocytosis of target cells. In this study, we examined the role of amoebic PI3K and PKC in amoeba-induced apoptotic cell death in Jurkat T cells. When Jurkat T cells were incubated with E. histolytica trophozoites, phosphatidylserine (PS) externalization and DNA fragmentation in Jurkat cells were markedly increased compared to those of cells incubated with medium alone. However, when amoebae were pretreated with a PI3K inhibitor, wortmannin before being incubated with E. histolytica, E. histolytica-induced PS externalization and DNA fragmentation in Jurkat cells were significantly reduced compared to results for amoebae pretreated with DMSO. In addition, pretreatment of amoebae with a PKC inhibitor, staurosporine strongly inhibited Jurkat T cell death. However, E. histolytica-induced cleavage of caspase-3, -6, and -7 were not inhibited by pretreatment of amoebae with wortmannin or staurosporin. In addition, we found that amoebic PI3K and PKC have an important role on amoeba adhesion to host compartment. These results suggest that amebic PI3K and PKC activation may play an important role in caspase-independent cell death in Entamoeba-induced apoptosis.
*Apoptosis
;
Caspases/metabolism
;
Entamoeba histolytica/*enzymology/*growth & development
;
Humans
;
Hydrolysis
;
Jurkat Cells
;
Phosphatidylinositol 3-Kinases/*metabolism
;
Protein Kinase C/*metabolism
;
T-Lymphocytes/*parasitology/*physiology
2.Age-Related CD4+CD25+Foxp3+ Regulatory T-Cell Responses During Plasmodium berghei ANKA Infection in Mice Susceptible or Resistant to Cerebral Malaria.
Ying SHAN ; Jun LIU ; Yan Yan PAN ; Yong Jun JIANG ; Hong SHANG ; Ya Ming CAO
The Korean Journal of Parasitology 2013;51(3):289-295
Different functions have been attributed to CD4+CD25+Foxp3+ regulatory T-cells (Tregs) during malaria infection. Herein, we describe the disparity in Treg response and pro- and anti-inflammatory cytokines during infection with Plasmodium berghei ANKA between young (3-week-old) and middle-aged (8-month-old) C57BL/6 mice. Young mice were susceptible to cerebral malaria (CM), while the middle-aged mice were resistant to CM and succumbed to hyperparasitemia and severe anemia. The levels of pro-inflammatory cytokines, such as TNF-alpha, in young CM-susceptible mice were markedly higher than in middle-aged CM-resistant mice. An increased absolute number of Tregs 3-5 days post-inoculation, co-occurring with elevated IL-10 levels, was observed in middle-aged CM-resistant mice but not in young CM-susceptible mice. Our findings suggest that Treg proliferation might be associated with the suppression of excessive pro-inflammatory Th1 response during early malaria infection, leading to resistance to CM in the middle-aged mice, possibly in an IL-10-dependent manner.
Aging/*immunology
;
Animals
;
Cytokines/genetics/metabolism
;
Female
;
Gene Expression Regulation
;
Malaria/*immunology/*parasitology
;
Mice
;
Plasmodium berghei/*classification
;
T-Lymphocytes, Regulatory/classification/*physiology