1.Inter-observer and intra-observer reliability between manual segmentation and semi-automated segmentation for carotid vessel wall volume measurements on three-dimensional ultrasonography
Chun Wai CHAN ; Sze Chai Christy CHOW ; Man Hei KWOK ; Ka Ching Tiffany NGAN ; Tsun Hei OR ; Simon Takadiyi GUNDA ; Michael YING
Ultrasonography 2023;42(2):214-226
Purpose:
Carotid vessel wall volume (VWV) measurement on three-dimensional ultrasonography (3DUS) outperforms conventional two-dimensional ultrasonography for carotid atherosclerosis evaluation. Although time-saving semi-automated algorithms have been introduced, their clinical availability remains limited due to a lack of validation, particularly an extensive reliability analysis. This study compared inter-observer and intra-observer reliability between manual segmentation and semi-automated segmentation for carotid VWV measurements on 3DUS.
Methods:
Thirty-one 3DUS volume datasets were prospectively acquired from 20 healthy subjects, aged >18 years, without previous stroke, transient ischemic attack, or cardiovascular disease. Five observers segmented all volume datasets both manually and semi-automatically. The process was repeated five times. Reliability was expressed by the intraclass correlation coefficient, supplemented by the coefficient of variation.
Results:
Carotid VWV measurements using the common carotid artery (CCA) were more reliable than those using the internal carotid artery (ICA) or external carotid artery (ECA) for both manual and semiautomated segmentation (manual segmentation, CCA: inter-observer, 0.935; intra-observer, 0.934 to 0.966; ICA: inter-observer, 0.784; intra-observer, 0.756 to 0.878; ECA: inter-observer, 0.732; intraobserver, 0.919 to 0.962; semi-automated segmentation, CCA: inter-observer, 0.986; intra-observer, 0.954 to 0.993; ICA: inter-observer, 0.977; intra-observer, 0.958 to 0.978; ECA: inter-observer, 0.966; intra-observer, 0.884 to 0.937). Total carotid VWV measurements by manual (inter-observer, 0.922; intra-observer, 0.927 to 0.961) and semi-automated segmentation (inter-observer, 0.987; intra-observer, 0.968 to 0.989) were highly reliable. Semi-automated segmentation showed higher reliability than manual segmentation for both individual and total carotid VWV measurements.
Conclusion
3DUS carotid VWV measurements of the CCA are more reliable than measurements of the ICA and ECA. Total carotid VWV measurements are highly reliable. Semi-automated segmentation has higher reliability than manual segmentation.
2.Integration and Reanalysis of Four RNA-Seq Datasets Including BALF, Nasopharyngeal Swabs, Lung Biopsy, and Mouse Models Reveals Common Immune Features of COVID-19
Rudi ALBERTS ; Sze Chun CHAN ; Qian-Fang MENG ; Shan HE ; Lang RAO ; Xindong LIU ; Yongliang ZHANG
Immune Network 2022;22(3):e22-
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndromecoronavirus-2 (SARS-CoV-2), has spread over the world causing a pandemic which is still ongoing since its emergence in late 2019. A great amount of effort has been devoted to understanding the pathogenesis of COVID-19 with the hope of developing better therapeutic strategies. Transcriptome analysis using technologies such as RNA sequencing became a commonly used approach in study of host immune responses to SARS-CoV-2. Although substantial amount of information can be gathered from transcriptome analysis, different analysis tools used in these studies may lead to conclusions that differ dramatically from each other. Here, we re-analyzed four RNA-sequencing datasets of COVID-19 samples including human bronchoalveolar lavage fluid, nasopharyngeal swabs, lung biopsy and hACE2 transgenic mice using the same standardized method. The results showed that common features of COVID-19 include upregulation of chemokines including CCL2, CXCL1, and CXCL10, inflammatory cytokine IL-1β and alarmin S100A8/S100A9, which are associated with dysregulated innate immunity marked by abundant neutrophil and mast cell accumulation. Downregulation of chemokine receptor genes that are associated with impaired adaptive immunity such as lymphopenia is another common feather of COVID-19 observed. In addition, a few interferon-stimulated genes but no type I IFN genes were identified to be enriched in COVID-19 samples compared to their respective control in these datasets. These features are in line with results from single-cell RNA sequencing studies in the field. Therefore, our re-analysis of the RNA-seq datasets revealed common features of dysregulated immune responses to SARS-CoV-2 and shed light to the pathogenesis of COVID-19.