1.A Polymorphism of the Renin Gene rs6682082 Is Associated with Essential Hypertension Risk and Blood Pressure Levels in Korean Women.
Jongkeun PARK ; Kijun SONG ; Yangsoo JANG ; Sungjoo KIM YOON
Yonsei Medical Journal 2015;56(1):227-234
PURPOSE: The aim of the present study was to investigate associations between the renin gene (REN) and the risk of essential hypertension and blood pressure (BP) levels in Koreans. MATERIALS AND METHODS: To outline the functional role of a single nucleotide polymorphism in the transcription of the REN gene, we conducted a case-control study of 1975 individuals: 646 hypertension (HT) patients and 1329 ethnically and age-matched normotensive subjects. RESULTS: Logistic regression analysis indicated that the genotypes AA/AG were strongly associated with risk of HT (odds ratio, 1.493; 95% confidence interval, 1.069-2.086, p=0.018) in female subjects. The genotypes AA/AG also showed significant association with higher blood pressure levels, both systolic and diastolic, in postmenopausal HT women (p=0.003 and p=0.017, respectively). Analysis of the promoter containing rs6682082 revealed a 2.4+/-0.01-fold higher activity in the A variant promoter than the G variant promoter, suggesting that rs6682082 is itself a functional variant. CONCLUSION: We suggest that the A allele of rs6682082 is a positive genetic marker for predisposition to essential hypertension and high BP in Korean women and may be mediated through the transcriptional activation of REN.
Alleles
;
Asian Continental Ancestry Group/*genetics
;
Blood Pressure/*genetics
;
Case-Control Studies
;
Diastole/genetics
;
Female
;
Gene Frequency
;
*Genetic Association Studies
;
*Genetic Predisposition to Disease
;
Humans
;
Hypertension/*genetics/*physiopathology
;
Luciferases/metabolism
;
Middle Aged
;
Polymorphism, Single Nucleotide/*genetics
;
Promoter Regions, Genetic/genetics
;
Renin/*genetics
;
Republic of Korea
;
Risk Factors
;
Systole/genetics
;
Transfection
2.Hemin, a heme oxygenase-1 inducer, improves aortic endothelial dysfunction in insulin resistant rats.
Yong-song CHEN ; Xu-xin ZHU ; Xiao-yun ZHAO ; Han-ying XING ; Yu-guang LI
Chinese Medical Journal 2008;121(3):241-247
BACKGROUNDUnder an insulin resistance (IR) state, overproduction of reactive oxygen species (ROS) may be playing a major role in the pathogenesis of endothelial dysfunction, hypertension and atherosclerosis. Recently, increasing attention has been drawn to the beneficial effects of heme oxygenase-1 (HO-1) in the cardiovascular system. This study aimed to investigate the effects of HO-1 on vascular function of thoracic aorta in IR rats and demonstrate the probable mechanisms of HO-1 against endothelial dysfunction in IR states.
METHODSSprague-Dawley (SD) rats fed with high-fat diet for 6 weeks and the IR models were validated with hyperinsulinemic-euglycemic clamp test. Then the IR rat models (n = 44) were further randomized into 3 subgroups, namely, the IR control group (n = 26, in which 12 were sacrificed immediately and evaluated for all study measures), a hemin treated IR group (n = 10) and a zinc protoporphyrin-IX (ZnPP-IX) treated IR group (n = 8) that were fed with a high-fat diet. Rats with standardized chow diet were used as the normal control group (n = 12). The rats in IR control group, hemin treated IR group and ZnPP-IX treated IR group were subsequently treated every other day with an intraperitoneal injection of normal saline, hemin (inducer of HO-1, 30 micromol/kg) or ZnPP-IX (inhibitor of HO-1, 10 micromol/kg) for 4 weeks. Rats in the normal control group remained on a standardized chow diet and were treated with intraperitoneal injections of normal saline every other day for 4 weeks. Systolic arterial blood pressure (SABP) was measured by tail-cuffed microphotoelectric plethysmography. The blood carbon monoxide (CO) was measured by blood gas analysis. The levels of nitric oxide (NO), inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), blood glucose (BG), insulin, total cholesterol (TC) and triglyceride (TG) in serum, and the levels of total antioxidant capacity (TAOC), malondialdehyde (MDA) and superoxide dismutase (SOD) in the aorta were measured. The expression of HO-1 mRNA and HO-1 protein in aortal tissue were detected by semi-quantitative RT-PCR and Western blot. The vasoreactive tensometry was performed with thoracic aortic rings (TARs).
RESULTSCompared with the normal control group, the levels of SABP, BG, insulin, TC, TG, NO, iNOS and MDA were higher, while the levels of CO, TAOC, SOD and eNOS were lower in IR control rats. After treatment of IR rats for 4 weeks a more intensive expression of HO-1 mRNA and HO-1 protein were observed in hemin treated IR group compared with the normal control group. And compared with 4-week IR control rats, the levels of CO, TAOC, SOD and eNOS were increased, while the levels of SABP and iNOS activity were lower in the hemin treated IR group. Administration of hemin in IR rats appeared to improve the disordered vasorelaxation of TARs to acetylcholine (ACh). Alternatively, the reverse results of SABP, CO, TAOC, SOD, iNOS and vasorelaxation responses to ACh were observed in IR rats with administration of ZnPP-IX.
CONCLUSIONSThe endothelial dysfunction in the aorta is present in the IR state. The protective effects of HO-1 against aortic endothelial dysfunction may be due to its antioxidation and regulative effect of vasoactive substances. It is proposed that hemin, inducer of HO-1, could be a potential therapeutic option for vascular dysfunction in IR states.
Animals ; Aorta ; drug effects ; physiology ; Carbon Monoxide ; blood ; Endothelium, Vascular ; drug effects ; physiology ; Enzyme Induction ; drug effects ; Heme Oxygenase-1 ; analysis ; biosynthesis ; genetics ; Hemin ; pharmacology ; Insulin Resistance ; Male ; Nitric Oxide ; blood ; Oxidative Stress ; Rats ; Rats, Sprague-Dawley ; Systole ; drug effects
3.Qindan capsule changes adventitial collagen synthesis in spontaneously hypertensive rats.
Yi-jing LV ; Gui-lin LIU ; Xu-ming JI ; Cun-zhong YUAN ; Bo WANG ; Min REN ; Lei YAN ; Xu-ping WANG ; Ji-dong ZHANG
Chinese journal of integrative medicine 2013;19(9):689-695
OBJECTIVETo investigate the effect of Qindan capsule (QC) on collagen synthesis and the mechanism underlying the process in spontaneously hypertensive rats (SHRs).
METHODSTwentyfour SHRs were divided into three groups: the hypertension model group, the QC treatment group, and the losartan treatment group. Eight Wistar Kyoto (WKY) rats were used as the normal control group. The systolic blood pressure (SBP) of the rats was monitored, and the thoracic aorta adventitia of the rats was segregated. The expressions of transforming growth factor 1 (TGF-β1), Smad3, and collagens I and were measured by histological staining and reverse transcription polymerase chain reaction.
RESULTSThe SBP was significantly higher in the model group than in the normal control group (P<0.01). However, a significant SBP-lowering effect was observed in QC or losartan treatment groups (P<0.05 or P<0.01) after 3 weeks of treatment. QC-treated rats showed a decrease of approximately 40 mm Hg, and the losartan-treated rats showed a decrease of approximately 50 mm Hg at the end of treatment compared with the beginning of treatment. The protein and gene levels of TGF-β1, Smad3, and collagens I and in the model group were significantly increased compared with those in the normal control group (P<0.01). However, the levels were significantly decreased in the QC or losartan treatment group compared with the model group (P<0.05 or P<0.01). However, there was no significant difference between the QC and losartan treatment groups (P<0.05).
CONCLUSIONSQC could exert its antihypertensive effect through down-regulating TGF-β1-stimulated collagen expressions. The TGF-β1/Smad3 signaling pathway may be involved in this process.
Adventitia ; drug effects ; metabolism ; pathology ; Animals ; Blood Pressure ; drug effects ; Blood Vessels ; drug effects ; metabolism ; pathology ; Capsules ; Collagen ; biosynthesis ; Collagen Type I ; genetics ; metabolism ; Collagen Type III ; genetics ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Losartan ; pharmacology ; Male ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Inbred SHR ; Rats, Inbred WKY ; Smad3 Protein ; genetics ; metabolism ; Staining and Labeling ; Systole ; drug effects ; Transforming Growth Factor beta1 ; genetics ; metabolism
4.Carvedilol protected diabetic rat hearts via reducing oxidative stress.
He HUANG ; Jiang SHAN ; Xiao-hong PAN ; Hui-ping WANG ; Ling-bo QIAN
Journal of Zhejiang University. Science. B 2006;7(9):725-731
Oxidative stress plays a dominant role in the pathogenesis of diabetes mellitus. Bcl-2 gene has close connection with antioxidant stress destruction in many diseases including diabetes. Carvedilol, an adrenoceptor blocker, also has antioxidant properties. To study the effect of carvedilol on the antioxidant status in diabetic hearts, we investigated carvedilol-administrated healthy and streptozotocin-induced diabetic rats. After small and large dosage carvedilol-administered for 5 weeks, hemodynamic parameters, the levels of malondialdehyde, activities of antioxidant enzymes and expression of Bcl-2 mRNA in the cardiac tissues were measured. The diabetic rats not only had cardiac disfunction, weaker activities of antioxidant enzymes, but also showed lower expression of Bcl-2. Carvedilol treatment increased activities of antioxidant enzymes and expression of Bcl-2 in healthy rats as well as diabetic rats. These results indicated that carvedilol partly improves cardiac function via its antioxidant properties in diabetic rats.
Animals
;
Antioxidants
;
pharmacology
;
Blood Glucose
;
analysis
;
Body Weight
;
drug effects
;
Carbazoles
;
pharmacology
;
Diabetes Mellitus, Experimental
;
drug therapy
;
metabolism
;
Heart
;
drug effects
;
Male
;
Malondialdehyde
;
analysis
;
Myocytes, Cardiac
;
metabolism
;
Oxidative Stress
;
drug effects
;
Propanolamines
;
pharmacology
;
Proto-Oncogene Proteins c-bcl-2
;
genetics
;
RNA, Messenger
;
analysis
;
Rats
;
Rats, Sprague-Dawley
;
Reverse Transcriptase Polymerase Chain Reaction
;
Streptozocin
;
Systole
;
drug effects