1.Syntenin: a novel PDZ domain-containing scaffolding protein associated with human melanoma metastasis.
Jian-Bo YANG ; James B MCCARTHY
Journal of Central South University(Medical Sciences) 2007;32(2):204-212
Syntenin is overexpressed in multiple human cancers and is newly recognized as a novel regulator in melanoma metastasis. It functions as a scaffolding protein, via its two PDZ domains interacting with multiple transmembrane and cytoplasmic partners to regulate many of the major signaling pathways involved in various cellular processes, such as cell surface receptor clustering, protein trafficking, cytoskeleton remodeling, and activation of transcription factor, and results in the increased abilities for tumor cell growth, adhesion, angiogenesis, invasion and metastasis. The present article attempts to review the structure and functions of syntenin by summarizing our current knowledge on the interacting partners and diverse signaling pathways related to syntenin, and highlight the importance of syntenin as a new potential therapeutic target for the aggressive human melanoma.
Animals
;
Biomarkers, Tumor
;
genetics
;
metabolism
;
Humans
;
Melanoma
;
genetics
;
metabolism
;
pathology
;
Neoplasm Metastasis
;
PDZ Domains
;
genetics
;
Signal Transduction
;
Syntenins
;
chemistry
;
genetics
;
metabolism
2.Syntenin increases the invasiveness of small cell lung cancer cells by activating p38, AKT, focal adhesion kinase and SP1.
Wook Youn KIM ; Ji Young JANG ; Yoon Kyung JEON ; Doo Hyun CHUNG ; Young Goo KIM ; Chul Woo KIM
Experimental & Molecular Medicine 2014;46(4):e90-
Syntenin is a PDZ domain-containing adaptor protein that has been recently shown to regulate migration and invasion in several tumors. Small cell lung cancer (SCLC) is notorious for its invasiveness and strong potential for metastasis. We therefore studied the influence of syntenin on the invasiveness of SCLC. Immunohistochemistry in tumor tissues showed that syntenin was more frequently expressed in small cell carcinomas than other neuroendocrine tumors, such as carcinoids and neuroblastomas, suggesting that syntenin expression may be related to more aggressive forms of neuroendocrine tumors. In SCLC patients, syntenin overexpression in tumor cells was significantly associated with more extensive and advanced disease at the time of diagnosis (P=0.029). Overexpression of syntenin in SCLC cells that were intrinsically syntenin-low increased the invasiveness of cells and led to the induction of extracellular matrix (ECM)-degrading membrane type 1-matrix metalloproteinase (MT1-MMP) and matrix metalloproteinase 2 (MMP2). In contrast, suppression of syntenin in syntenin-high cells was associated with the downregulation of MT1-MMP. Contrary to the results of previous studies using malignant melanomas and breast carcinomas, signaling cascades were shown to be further transduced through p38 MAPK and PI3K/AKT, with activation of SP1 rather than NF-kappaB, under circumstances not involving ECM interaction. In addition, the upstream molecule focal adhesion kinase was induced by syntenin activation, in spite of the absence of ECM interaction. These results suggest that syntenin might contribute to the invasiveness of SCLC and could be utilized as a new therapeutic target for controlling invasion and metastasis in SCLC.
Cell Line, Tumor
;
Focal Adhesion Protein-Tyrosine Kinases/*metabolism
;
Humans
;
Matrix Metalloproteinase 14/genetics/metabolism
;
Matrix Metalloproteinase 2/genetics/metabolism
;
Neoplasm Invasiveness
;
Phosphatidylinositol 3-Kinases/*metabolism
;
Proto-Oncogene Proteins c-akt/*metabolism
;
Signal Transduction
;
Small Cell Lung Carcinoma/*metabolism/pathology
;
Sp1 Transcription Factor/*metabolism
;
Syntenins/genetics/*metabolism
;
p38 Mitogen-Activated Protein Kinases/*metabolism