1.Chemical constituents from Clausena excavata and their inhibitory activities against proliferation of synoviocytes.
Jia-Ming GUO ; Xiao-Mei YU ; Bo JIANG ; Qin-Ting SU ; Wen-Qing CAO ; Yan-Ping LIU ; Yan-Hui FU
China Journal of Chinese Materia Medica 2021;46(17):4438-4445
The chemical constituents from the stems and leaves of Clausena excavata were isolated and purified by column chromatography with silica gel, ODS, Sephadex LH-20 and RP-HPLC. The chemical structures of the isolated compounds were identified on the basis of physicochemical properties, spectroscopic analysis, as well as the comparisons with the data reported in literature. Nineteen compounds were isolated from the 90% ethanol extract of the stems and leaves of C. excavata, which were identified as methyl orsellinate(1), syringaresinol(2), lenisin A(3), scopoletin(4), osthenol(5), N-benzoyltyrarnine methyl ether(6), N-p-coumaroyltyramine(7), aurantiamide acetate(8), 1H-indole-3-carboxaldehyde(9), furostifoline(10), clausenalansine E(11), 3-formylcarbazole(12), clausine L(13), clausine E(14), methyl carbazole-3-carboxylate(15), glycosinin(16), murrayafoline A(17), clausine H(18) and 2,7-dihydroxy-3-formyl-1-(3'-methyl-2'-butenyl)carbazole(19). Among these isolated compounds, compounds 1-11 were isolated from C. excavata for the first time, and compounds 1, 2 and 10 were isolated from the genus Clausena for the first time. In addition, this study evaluated the anti-rheumatoid arthritis activities of compounds 1-19 by measuring their anti-proliferative effects on synoviocytes in vitro according to MTS method. Compounds 10-19 displayed remarkable anti-rheumatoid arthritis activities, which exhibited the inhibitory effects on the proliferation of MH7 A synovial fibroblast cells with the IC_(50) values ranging from(27.63±0.18) to(235.67±2.16) μmol·L~(-1).
Cell Proliferation
;
Chromatography, Reverse-Phase
;
Clausena
;
Plant Leaves
;
Synoviocytes
2.Chemical constituents from Morinda citrifolia and their inhibitory activities on proliferation of synoviocytes in vitro.
Ying-Ying ZHAO ; Qiao-Mei YU ; Ze-Hua QIAO ; Juan LI ; Hao-Xuan TANG ; Guang-Ying CHEN ; Yan-Hui FU
China Journal of Chinese Materia Medica 2021;46(10):2519-2526
The chemical constituents from the stems and leaves of Morinda citrifolia were isolated and purified by column chromatography methods with silica gel, ODS, Sephadex LH-20 and preparative high performance liquid chromatography(HPLC). The structures of the isolated compounds were identified by physicochemical properties and spectroscopic analysis, as well as comparisons with the data reported in literature. 17 compounds were isolated from the 90% ethanol extract of the stems and leaves of M. citrifolia, and were identified as 9,10-dihydroxy-4, 7-megastigmadien-3-one(1), 5,12-epoxy-6,9-hydroxy-7-megastigmen-3-one(2), fukinone(3), β-eudesmol(4), sarmentol F(5), 4, 5-dihydroblumenol A(6), 3-hydroxy-β-ionone(7), aristol-8-en-1-one(8), ergosta-7-en-3β-ol(9), ergosta-7-ene-3β,5α,6β-triol(10),(22E)-5α,8α-epidioxyergosta-6,22-dien-3β-ol(11), olivil(12), 4-epi-larreatricin(13), chushizisin Ⅰ(14), rabdosia acid A(15), glycerol monolinoleate(16) and(9Z,12Z,15Z)-2,3-dihydroxypropyl octadeca-trienoate(17). All compounds were isolated from M. citrifolia for the first time. All isolated compounds were evaluated for their anti-rheumatoid arthritis activities via examining their inhibitory activities on the proliferation of synoviocytes in vitro using MTS met-hod. Compounds 1-11 showed significant anti-rheumatoid arthritis activities, displaying the inhibitory effects on the proliferation of MH7 A synovial fibroblast cell with the IC_(50) values ranging from(38.69±0.86) to(203.45±1.03) μmol·L~(-1).
Cell Proliferation
;
Chromatography, High Pressure Liquid
;
Molecular Structure
;
Morinda
;
Synoviocytes
3.Chemical constituents from fruits of Morinda citrifolia and their inhibitory effects on proliferation of synoviocytes in vitro.
Zhang-Yang SHEN ; Ruo-Qing GUAN ; Meng-Ran DU ; Yuan BIAN ; Yu WANG ; Xin-Yuan SUO ; Shu-Hong XIONG ; Yan-Ping LIU ; Yan-Hui FU
China Journal of Chinese Materia Medica 2023;48(1):105-113
The chemical constituents from the fruits of Morinda citrifolia were systematically explored by chromatographic fractionation methods including silica gel, octadecylsilyl(ODS) gel, Sephadex LH-20 gel, and preparative high performance liquid chromatography(pre-HPLC). The chemical structures of all isolated compounds were identified on the basis of their physicochemical properties, spectroscopic analyses, as well as the comparisons of their physicochemical and spectroscopic data with the reported data in literature. As a result, 22 isolated compounds from the 90% ethanol extract of the fruits of M. citrifolia were identified, which were moricitritone(1), 2'-deoxythymidine(2), cyclo-(L-Pro-L-Tyr)(3), methyl-5-hydroxy-2-pyridinecarboxylate(4), methyl pyroglutamate(5), bisbenzopyran(6), epipinoresinol(7), 3, 3'-bisdemethyl pinoresinol(8), 3, 3'-bisdemethyltanegool(9), trimesic acid(10), crypticin B(11), kojic acid(12), vanillic acid(13), protocatechoic acid(14), 5-hydroxymethyl furfural(15), blumenol A(16), 1-O-(9Z, 12Z-octadecadienoyl) glycerol(17), mucic acid dimethylester(18), methyl 2-O-β-D-glucopyranosylbenzoate(19), 2-phenylethyl-O-β-D-glucoside(20), scopoletin(21), and quercetin(22). Among them, compound 1 was a new pyrone derivative, compounds 2, 4-7, 10-12, and 17 were isolated from the plants belonging to Morinda genus for the first time, and compound 18 was obtained from M. citrifolia for the first time. Moreover, on the basis of testing the activities of all isolated compounds on inhibiting the proliferation of synovial fibroblasts in vitro by MTS assay, the anti-rheumatoid arthritis activities of all isolated compounds were initially evaluated. The results showed that compounds 1-6, 9, 19, and 20 exhibited remarkable anti-rheumatoid arthritis activities, which displayed the inhibitory effects on the proliferation of MH7A synovial fibroblast cells with the IC_(50) values in the range of(3.69±0.08) to(168.96±0.98) μmol·L~(-1).
Fruit/chemistry*
;
Morinda/chemistry*
;
Synoviocytes
;
Cell Proliferation
;
Arthritis
4.Cheng's Juanbi Decoction enhances autophagy in rheumatoid arthritis fibroblast-like syn-oviocytes by suppressing the PI3K/Akt/mTOR signal axis.
Guang Han SUN ; Xia XU ; Lei WAN ; Shu Ling NAN ; Yu Feng WANG ; Li ZHAO ; Hui CHENG ; Kun WANG ; Ying LIU ; Yan Yan FANG ; Lang SUN ; Jun ZHU
Journal of Southern Medical University 2022;42(11):1726-1731
OBJECTIVE:
To study the regulatory effect of Cheng's Juanbi Decoction (JBT) on autophagy in rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and role of PI3K/Akt/mTOR signaling axis in the mechanism mediating this effect.
METHODS:
CCK8 assay was used to determine the optimal concentration and treatment time of JBT for inhibiting the viability of RA- FLS. The effect of freeze-dried powder of JBT, RAPA, or both on morphology of the autophagosomes in RA-FLS was observed under transmission electron microscope, and the changes in the number of autophagosomes and autolysosomes were observed with autophagy double-labeled adenovirus experiment. RT-qPCR and Western blotting were used to detect the expression levels of the related indicators.
RESULTS:
The results of CCK8 assay showed that treatment with 0.5 mg/mL JBT for 12 h produced the optimal effect for inhibiting RA-FLS viability. Observation with transmission electron microscope and the results of the autophagy double-labeled adenovirus experiment both showed the presence of a small number of autophagosomes in control RA-FLS group, and treatment with JBT significantly increased the number of autophagosomes and lowered the number of autophagolysosomes in the cells. Compared with the control cells and the cells treated with JBT or RAPA alone, the cells treated with both JBT and RAPA showed significantly decreased mRNA levels of PI3K, Akt and mTOR (P < 0.01) but without significant changes in their protein expressions (P > 0.05); the combined treatment significantly inhibited the protein expressions of p-PI3K, p-Akt, p-mTOR, and P62 (P < 0.05) and upregulated the protein expressions of Beclin-1 and LC3B (P < 0.05) in the cells.
CONCLUSION
JBT can inhibit the survival rate of RA-FLS and increase the level of autophagy possibly through a mechanism that down-regulates PI3K/Akt/mTOR signaling pathway.
Humans
;
Phosphatidylinositol 3-Kinases
;
Autophagy
;
Fibroblasts
;
Synoviocytes
;
Arthritis, Rheumatoid
;
Adenoviridae
;
TOR Serine-Threonine Kinases
5.Chemical constituents from Artocarpus incisus and their inhibitory effects on proliferation of synoviocytes in vitro.
Yu-Tong XIE ; Shu-Hong XIONG ; Yuan BIAN ; Yu WANG ; Ruo-Qing GUAN ; Xin-Yuan SUO ; Meng-Ran DU ; Yan-Ping LIU ; Yan-Hui FU
China Journal of Chinese Materia Medica 2022;47(17):4665-4673
The chemical constituents from the branches and leaves of Artocarpus incisus were isolated and purified via silica gel, ODS, and Sephadex LH-20 column chromatography as well as preparative HPLC. The chemical structures of all isolated compounds were identified in the light of their physicochemical properties, spectroscopic analyses, and comparisons of their physicochemical and spectroscopic data with the reported data in literature. As a result, 20 compounds were isolated and characterized from the 90% ethanol extract of the branches and leaves of A. incisus, which were identified as tephrosin(1), 6-hydroxy-6 a, 12 a-dehydrodeguelin(2), sarcolobin(3), lupiwighteone(4), 12-deoxo-12α-methoxyelliptone(5), 6 aα,12 aα-12 a-hydroxyelliptone(6), homopterocarpin(7), 3-hydroxy-8,9-dimethoxypterocarpan(8), pterocarpin(9), maackiain(10), medicarpin(11), calycosin(12), genistein(13), formononetin(14), 5-hydroxy-4',7-dimethoxy isoflavone(15), liquiritigenin(16), 4(15)-eudesmene-1β,7α-diol(17), ent-4(15)-eudesmene-1β,6α-diol(18), 1α-hydroxyisodauc-4-en-15-al(19), and guaianediol(20). Except compounds 13 and 16, all other compounds were isolated from the Artocarpus plants for the first time. Additionally, using MTS assay, compounds 1-20 were eva-luated for their anti-rheumatoid arthritis activities by measuring their anti-proliferative effects on synoviocytes in vitro. As a consequence, compounds 1-16 showed notable anti-rheumatoid arthritis activities, which displayed inhibitory effects on the proliferation of MH7 A synovial fibroblast cells, with the IC_(50) values in range of(9.86±0.09)-(218.07±1.96) μmol·L~(-1).
Arthritis
;
Artocarpus
;
Cell Proliferation
;
Ethanol
;
Genistein
;
Plant Extracts/pharmacology*
;
Silica Gel
;
Synoviocytes
6.Mechanism of Huangqi Guizhi Wuwu Decoction in treatment of rheumatoid arthritis based on UPLC-LTQ-Orbitrap-MS, network pharmacology, and cell experiment.
Wen-Wen LU ; Yi-Jing QIU ; Xiao-Fen FAN ; Guo-You YU ; Guo-Lin WU
China Journal of Chinese Materia Medica 2021;46(24):6454-6464
In this study, ultra-high performance liquid chromatography-linear ion trap/electrostatic field orbit trap combined-type mass spectrometry(UPLC-LTQ-Orbitrap-MS) was used to analyze the main active components of Huangqi Guizhi Wuwu Decoction(HQGZ). A total of 50 active components were identified from HQGZ and 108 potential targets of the components related to the treatment of rheumatoid arthritis were retrieved based on network pharmacology, including 87 key targets, followed by Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the targets. The result indicated that HQGZ may exert therapeutic effects mainly through the sphingolipid signaling pathway, tumor necrosis factor(TNF) signaling pathway, as well as the positive regulation of ribonucleic acid(RNA) polymerase Ⅱ promoter transcription, inflammatory response and other biological processes. At the same time, cell experiment was performed to verify the key proteins in the TNF signaling pathway. The results demonstrated that HQGZ significantly reduced the expression of caspase-3(CASP3), TNF, relaxed(RELA) protein, and IkappaB kinase beta(IKBKB) in fibroblast-like synoviocytes induced by TNF-α. The results of UPLC-LTQ-Orbitrap-MS, network pharmacology and cell experiment showed that the active components in HQGZ may inhibit inflammatory response and regulate immune function and cell apoptosis by modulating key proteins in TNF signaling pathway to treat rheumatoid arthritis.
Arthritis, Rheumatoid/genetics*
;
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Network Pharmacology
;
Synoviocytes
7. decoction induces apoptosis by activating Fas/caspase-8 pathway in rheumatoid arthritis fibroblast-like synoviocytes.
Fan ZHAO ; Jiayu LI ; Qijin LU ; Ensheng CHEN ; Lixia YUAN
Journal of Southern Medical University 2020;40(8):1119-1126
OBJECTIVE:
To explore the effect of decoction (DGNTD) on cell apoptosis and TNF receptor super family 6 (Fas)/caspase-8 pathway in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS).
METHODS:
FLS isolated from the synovial tissue of RA patients were cultured and identified using immunofluorescence staining. The cells were treated with 10% blank serum (blank control group), 10% sera containing low, moderate or high doses of DGNTD, or 20 μmol/mL KR-33493 (a Fas inhibitor) combined with 10% serum containing high-dose DGNTD. MTT assay was used to detect the proliferation of the cells after the treatments. Apoptosis of the cells was detected at 48 h in each group using Hoechst 33342 staining and flow cytometry with annexin V-FITC/PI staining. The mRNA and protein expressions of Fas, FADD, caspase-8 and caspase-3 in the cells at 48 h were detected using qPCR and Western blotting.
RESULTS:
Immunofluorescence staining identified the cultured cells as FLS. Treatment with DGNTD-containing sera significantly inhibited the proliferation of FLS, and the inhibitory effects were enhanced as the dose and intervention time increased ( < 0.05). Hoechst 33342 staining and flow cytometry showed that the sera containing different doses of DGNTD significantly promoted apoptosis of FLS ( < 0.05). The expression levels of Fas, FADD, caspase-8, and caspase-3 at both mRNA and protein levels were significantly increased in the cells after treatment with different doses of DGNTD-containing sera ( < 0.05). The application of KR-33493 obviously reversed the effects of DGNTD on the FLS ( < 0.05).
CONCLUSIONS
DGNTD can induce apoptosis of the FLS by activating Fas/caspase-8 signaling pathway.
Apoptosis
;
Arthritis, Rheumatoid
;
Caspase 8
;
Cell Proliferation
;
Cells, Cultured
;
Fibroblasts
;
Synovial Membrane
;
Synoviocytes
8.Chemical constituents from stems and leaves of Cratoxylum cochinchinense and their inhibitory effects on proliferation of synoviocytes in vitro.
Yong ZHANG ; Ni-Fei SHI ; Zhen XIE ; Yi-Meng ZHAO ; Cai-Huan LIANG ; Ya-Yuan DENG ; Ran WANG ; Yan-Ping LIU ; Yan-Hui FU
China Journal of Chinese Materia Medica 2023;48(18):5014-5023
The chemical constituents from the stems and leaves of Cratoxylum cochinchinense were isolated and purified using silica gel, ODS gel, and Sephadex LH-20 gel column chromatography, as well as preparative HPLC. The chemical structures of all isolated compounds were identified on the basis of their physicochemical properties, spectroscopic analyses, and the comparison of their physicochemical and spectroscopic data with the reported data in literature. As a result, 21 compounds were isolated from the 90% ethanol extract of the stems and leaves of C. cochinchinense, which were identified as cratocochine(1), 1-hydroxy-3,7-dimethoxyxanthone(2), 1-hydroxy-5,6,7-trimethoxyxanthone(3), ferrxanthone(4), 3,6-dihydroxy-1,5-dimethoxyxanthone(5), 3,6-dihydroxy-1,7-dimethoxyxanthone(6), 1,2,5-trihydroxy-6,8-dimethoxyxanthone(7), securixanthone G(8), gentisein(9), 3,7-dihydroxy-1-methoxyxanthone(10), pancixanthone B(11), garcimangosxanthone A(12), pruniflorone L(13), 9-hydroxy alabaxanthone(14), cochinchinone A(15), luteolin(16), 3,5'-dimethoxy-4',7-epoxy-8,3'-neolignane-5,9,9'-triol(17), N-benzyl-9-oxo-10E,12E-octadecadienamide(18), 15-hydroxy-7,13E-labdadiene(19), stigmasta-4,22-dien-3-one(20), and stigmast-5-en-3β-ol(21). Among these isolates, compound 1 was a new xanthone, compounds 2-5, 7, 8, 12, and 16-21 were isolated from the Cratoxylum plant for the first time, and compounds 11 and 13 were obtained from C. cochinchinense for the first time. Furthermore, all isolated compounds 1-21 were appraised for their anti-rheumatoid arthritis activities by MTS method through measuring their anti-proliferative effect on synoviocytes in vitro. As a result, xanthones 1-15 displayed notable anti-rheumatoid arthritis activities, which showed inhibitory effects on the proliferation of MH7A synoviocytes with the IC_(50) values ranging from(8.98±0.12) to(228.68±0.32) μmol·L~(-1).
Synoviocytes
;
Clusiaceae/chemistry*
;
Xanthones/analysis*
;
Plant Leaves/chemistry*
;
Cell Proliferation
;
Arthritis
9.Screening and analysis for autophagy
Hua SHANG ; Qing PENG ; Jiajun LIU ; Yan LIU ; Li LONG
Journal of Central South University(Medical Sciences) 2021;46(10):1071-1079
OBJECTIVES:
Long non-coding RNA (lncRNA) has become a key epigenetic regulator that regulates gene expression and affects a variety of biological processes. LncRNA plays an important role in the occurrence and development of rheumatoid arthritis (RA). The study on lncRNA in peripheral blood cells of RA patients has been reported. However, there is no study on autophagy regulation by lncRNA in RA patients. This study aims to provide a new direction for the diagnosis and treatment of RA via screening the changes of lncRNAs in RA fibroblast-like synoviocytes (RA-FLSs) before and after autophagy and finding the key lncRNAs targeting RA-FLSs autophagy.
METHODS:
Synovial tissues of 6 RA patients after knee and hip joint surgery were obtained, and RA-FLSs were cultured to the 5th generation for further experiments (tissue culture method). After treatment with mTOR inhibitor PP242, the expression of LC3-II was detected by Western blotting. Total RNAs of 3 cases of RA-FLSs before and after treatment with mTOR inhibitor PP242 were extracted by TRIzol and screened by Agilent Human ceRNA Microarray 2019 (4×180 K, design ID: 086188) chip. The lncRNAs with significantly changed expression levels were selected (difference multiple≥2.0,
RESULTS:
RA-FLSs were successfully isolated and cultured from the synovial tissues of the patient's knee or hip joint. After 6 RA-FLSs were treated with PP242, the expression level of autophagy marker protein LC3-II was increased (
CONCLUSIONS
Differentially expressed lncRNAs in RA-FLSs have been identified with microarray analysis. In RA, differential expression of lncRNAs is involved in the autophagy of RA-FLSs. The underlying mechanisms based on bioinformatics analysis include regulating the secretion of cytokines, such as IL-6, TGF-β, TNF-α and IL-17, participating in the immune cell differentiation, such as Th17, Th1, Th2 cells and osteoclasts, as well as regulating the autophagy pathway, MAPK, FoxO, and other signaling pathways. It has been verified that the expression of ENST0000584721.1 is up-regulated and ENST0000615939.1 is down-regulated after autophagy of RA FLSs, which provides a good experimental basis for further study on the mechanism of lncRNA in RA-FLSs autophagy.
Arthritis, Rheumatoid/genetics*
;
Autophagy/genetics*
;
Cell Proliferation
;
Cells, Cultured
;
Fibroblasts
;
Humans
;
RNA, Long Noncoding/genetics*
;
Reproducibility of Results
;
Synoviocytes
10.Role of ceRNA network in inflammatory cells of rheumatoid arthritis.
Xiaoyu HE ; Haohua HE ; Yan ZHANG ; Tianyu WU ; Yongjie CHEN ; Chengzhi TANG ; Tian XIA ; Xiaonan ZHANG ; Changhao XIE
Journal of Central South University(Medical Sciences) 2023;48(5):750-759
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease caused by inflammatory cells. Various inflammatory cells involved in RA include fibroblast-like synoviocytes, macrophages, CD4+T-lymphocytes, B lymphocytes, osteoclasts and chondrocytes. The close interaction between various inflammatory cells leads to imbalance of immune response and disorder of the expression of mRNA in inflammatory cells. It helps to drive production of pro-inflammatory cytokines and stimulate specific antigen-specific T- and B-lymphocytes to produce autoantibodies which is an important pathogenic factor for RA. Competing endogenous RNA (ceRNA) can regulate the expression of mRNA by competitively binding to miRNA. The related ceRNA network is a new regulatory mechanism for RNA interaction. It has been found to be involved in the regulation of abnormal biological processes such as proliferation, apoptosis, invasion and release of inflammatory factors of RA inflammatory cells. Understanding the ceRNA network in 6 kinds of RA common inflammatory cells provides a new idea for further elucidating the pathogenesis of RA, and provides a theoretical basis for the discovery of new biomarkers and effective therapeutic targets.
Humans
;
Arthritis, Rheumatoid/genetics*
;
MicroRNAs/metabolism*
;
Synoviocytes/pathology*
;
Cytokines/metabolism*
;
RNA, Messenger/metabolism*
;
Fibroblasts/pathology*
;
Cell Proliferation