1.Mechanism of Low K+-induced Depolarization in Mammalian Cardiac Muscle.
Duck Sun AHN ; Syng Ill LEE ; Doo Hee KANG
Yonsei Medical Journal 1987;28(3):176-182
The membrane permeability to potassium at a resting state is greater than to any other ions and the maintenance of resting membrane potential is largely dependent on K+ concentration of outside medium (Hodgkin and Horowicz 1959), i.e. an increase of K+ concentration of medium induces a depolarization, vice versa. However, on the contrary to this prediction, in some mammalian heart muscle a reduction of external K+ concentration induces a depolarization of membrane potential rather than a hyperpolarization (Vassalle 1965). In this study it was aimed to elucidate the possible mechanism of spontaneous depolarization induced by low external K+ in canine Purkinje fibers. The membrane potential was constantly recorded while components of cations in the bathing medium were replaced one by one by equimolar sucrose until the low K+ induced depolarization was blocked. The results are summarized as follows; The membrane potential of canine Purkinje fibers was spontaneously depolarized by low external K+, and the magnitude of depolarization was not affected by verapamil TEA, and a partial replacement of external Na+ and Ca2+ with choline chloride. But the membrane potential was hyperpolarized only when the all external cations were substitued with sucrose; and this hyperpolarization was disappeared again by substitution of sucrose with choline chloride. From these results, it may be concluded that the depolarization induced by low external K+ in canine Purkinje fibers is due to the nonspecific increase of membrane permeability to external cations and/or combinations with decreased K+ conductance.
Animal
;
Dogs
;
Guinea Pigs
;
Heart/physiology*
;
Membrane Potentials/drug effects*
;
Papillary Muscles/physiology
;
Potassium/pharmacology*
;
Purkinje Fibers/physiology
;
Rest
2.The effect of progressive tensional force on mRNA expression of osteoprotegerin and receptor activator of nuclear factor kappa B ligand in the human periodontal ligament cell.
Kie Joo LEE ; Syng Ill LEE ; Chung Ju HWANG ; Seung Ho OHK ; Yu Shin TIAN
Korean Journal of Orthodontics 2005;35(4):262-274
Tooth movement is a result of mutual physiologic responses between the periodontal ligament and alveolar bone stimulated by mechanical strain. The PDL cell and osteoblast are known to have an influence on bone formation by controlling collagen synthesis and alkaline phosphatase activation. Moreover, recent studies have shown that the PDL cell and osteoblast release osteoprotegerin (OPG) and the receptor activator of nuclear factor kappa B ligand (RANKL) to control the level of osteoclast differentiation and activation which in turn influences bone resorption. In this study, progressively increased, continuous tensional force was applied to PDL cells. The objective was to find out which kind of biochemical reactions occur after tensional force application and to illuminate the alveolar bone resorption and apposition mechanism. Continuous and progressively increased tensile force was applied to PDL cells cultured on a petriperm dish with a flexible membrane. The amount of PGE2 and ALP synthesis were measured after 1, 3, 6 and 12 hours of force application. Secondly, RT-PCR analysis was carried out for OPG and RANKL which control osteoclast differentiation and MMP-1, -8, -9, -13 and TIMP-1 which regulate the resolution of collagen and resorption of the osteoid layer. According to the results, we concluded that progressively increased, continuous force application to human PDL cells reduces PGE2 synthesis, and increases OPG mRNA expression.
Alkaline Phosphatase
;
Bone Resorption
;
Collagen
;
Dinoprostone
;
Humans
;
Membranes
;
Osteoblasts
;
Osteoclasts
;
Osteogenesis
;
Osteoprotegerin*
;
Periodontal Ligament
;
RANK Ligand*
;
Receptor Activator of Nuclear Factor-kappa B*
;
RNA, Messenger*
;
Tissue Inhibitor of Metalloproteinase-1
;
Tooth Movement
3.The Transcription Factor Mist1 Regulates the Cellular Polarity in Mouse Pancreatic Acinar Cells.
Yu Mi YANG ; Syng Ill LEE ; Dong Min SHIN
International Journal of Oral Biology 2012;37(1):37-41
Pancreatic acinar cells exhibit a polarity that is characterized by the localization of secretory granules at the apical membrane. However, the factors that regulate cellular polarity in these cells are not well understood. In this study, we investigated the effect of Mist1, a basic helix-loop-helix transcription factor, on the cellular architecture of pancreatic acinar cells. Mist1-null mice displayed secretory granules that were diffuse throughout the pancreatic acinar cells, from the apical to basolateral membranes, whereas Mist1 heterozygote mice showed apical localization of secretory granules. Deletion of the Mist1 gene decreased the expression of type 3 inositol 1,4,5-triphosphate receptors (IP3R) but did not affect apical localization and expression of IP3R2. Mist1-null mice also displayed an increase in luminal areas and an increase in the expression of zymogen granules in pancreatic acinar cells. These results suggest that Mist1 plays a critical role in polar localization of cellular organelles and in maintaining cellular architecture in mouse pancreatic acinar cells.
Acinar Cells
;
Animals
;
Cell Polarity
;
Heterozygote
;
Inositol 1,4,5-Trisphosphate Receptors
;
Membranes
;
Mice
;
Organelles
;
Phenobarbital
;
Secretory Vesicles
;
Transcription Factors
4.Initiation Site of Ca2+ Entry Evoked by Endoplasmic Reticulum Ca2+ Depletion in Mouse Parotid and Pancreatic Acinar Cells.
Hae JO ; Hae Mi BYUN ; Syng Ill LEE ; Dong Min SHIN
Yonsei Medical Journal 2007;48(3):526-530
PURPOSE: In non-excitable cells, which include parotid and pancreatic acinar cells, Ca(2+) entry is triggered via a mechanism known as capacitative Ca(2+) entry, or store-operated Ca(2+) entry. This process is initiated by the perception of the filling state of endoplasmic reticulum (ER) and the depletion of internal Ca(2+) stores, which acts as an important factor triggering Ca(2+) entry. However, both the mechanism of store-mediated Ca(2+) entry and the molecular identity of store-operated Ca(2+) channel (SOCC) remain uncertain. MATERIALS AND METHODS: In the present study we investigated the Ca(2+) entry initiation site evoked by depletion of ER to identify the localization of SOCC in mouse parotid and pancreatic acinar cells with microfluorometeric imaging system. RESULTS: Treatment with thapsigargin (Tg), an inhibitor of sarco/endoplasmic reticulum Ca(2+)-ATPase, in an extracellular Ca(2+) free state, and subsequent exposure to a high external calcium state evoked Ca(2+) entry, while treatment with lanthanum, a non-specific blocker of plasma Ca(2+) channel, completely blocked Tg-induced Ca(2+) entry. Microfluorometric imaging showed that Tg-induced Ca(2+) entry started at a basal membrane, not a apical membrane. CONCLUSION: These results suggest that Ca2+ entry by depletion of the ER initiates at the basal pole in polarized exocrine cells and may help to characterize the nature of SOCC.
Animals
;
Calcium/*metabolism
;
Calcium Channels/drug effects/metabolism
;
Cells, Cultured
;
Endoplasmic Reticulum/drug effects/*metabolism
;
Mice
;
Mice, Inbred ICR
;
Microscopy, Fluorescence
;
Pancreas/cytology/drug effects/*metabolism
;
Parotid Gland/cytology/drug effects/*metabolism
;
Thapsigargin/pharmacology
5.Role of Regulators of G-Protein Signaling 4 in Ca2+ Signaling in Mouse Pancreatic Acinar Cells.
Soonhong PARK ; Syng Ill LEE ; Dong Min SHIN
The Korean Journal of Physiology and Pharmacology 2011;15(6):383-388
Regulators of G-protein signaling (RGS) proteins are regulators of Ca2+ signaling that accelerate the GTPase activity of the G-protein alpha-subunit. RGS1, RGS2, RGS4, and RGS16 are expressed in the pancreas, and RGS2 regulates G-protein coupled receptor (GPCR)-induced Ca2+ oscillations. However, the role of RGS4 in Ca2+ signaling in pancreatic acinar cells is unknown. In this study, we investigated the mechanism of GPCR-induced Ca2+ signaling in pancreatic acinar cells derived from RGS4-/- mice. RGS4-/- acinar cells showed an enhanced stimulus intensity response to a muscarinic receptor agonist in pancreatic acinar cells. Moreover, deletion of RGS4 increased the frequency of Ca2+ oscillations. RGS4-/- cells also showed increased expression of sarco/endoplasmic reticulum Ca2+ ATPase type 2. However, there were no significant alterations, such as Ca2+ signaling in treated high dose of agonist and its related amylase secretion activity, in acinar cells from RGS4-/- mice. These results indicate that RGS4 protein regulates Ca2+ signaling in mouse pancreatic acinar cells.
Acinar Cells
;
Amylases
;
Animals
;
Calcium-Transporting ATPases
;
GTP Phosphohydrolases
;
GTP-Binding Proteins
;
Mice
;
Pancreas
;
Proteins
;
Receptors, Muscarinic
;
Reticulum
;
RGS Proteins
6.Identification of putative periodontal pathogens in Korean chronic periodontitis patients.
Jeong Ho YUN ; Jung Eun PARK ; Doo Il KIM ; Syng Ill LEE ; Seong Ho CHOI ; Kyoo Sung CHO ; Dae Sil LEE
The Journal of the Korean Academy of Periodontology 2008;38(2):143-152
PURPOSE: Specific bacteria are believed to play an important role in chronic periodontitis. Although extensive microbial analyses have been performed from subgingival plaque samples of periodontitis patients, systemic analysis of subingival microbiota has not been carried out in a Korean population so far. The purpose of this study was to investigate the prevalence of 29 putative periodontal pathogens in Korean chronic periodontitis patients and evaluate which pathogens are more associated with Korean chronic periodontitis. MATERIAL AND METHODS: A total of 86 subgingival plaque samples were taken from 15 chronic periodontits(CP) patients and 13 periodontally healthy subjects in Korea. CP samples were obtained from the deepest periodontal pocket (>3 mm probing depth[PD]) and the most shallow periodontal probing site (< or =3 mm PD) in anterior tooth and posterior tooth, respectively, of each patient. Samples in healthy subjects were obtained from 1 anterior tooth and 1 posterior tooth. Polymerase chain reaction (PCR) of 16S ribosomal DNA (rDNA) of subgingival plaque bacteria was performed. Detection frequencies(% prevalence) of 29 putative periodontal pathogens were investigated as bacterium-positive sites/total sites RESULTS: With the exception of Olsenella profuse and Prevotella nigrescens, the sites of diseased patients generally showed higher prevalence than the healthy sites of healthy subjects for all bacteria analyzed. Tanerella forsythensis (B.forsythus), Campylobacter rectus, Filifactor alocis, Fusobacterium nucleatum, Porphyromonas endodontalis and Porphyromonas gingivalis were detected in more than 80% of sites with deep probing depths in CP patients. In comparison between the sites (deep or shallow PD) of CP patients and the healthy sites of healthy subjects, there was statistically significant difference(P <0.05) of prevalence in T.forsythensis (B.forsythus), C.rectus, Dialister invisus, F.alocis, P.gingivalis and Treponema denticola. CONCLUSION: Our results demonstrate that the four putative periodontal pathogens, T.forsythensis (B.forsythus), C.rectus, P.gingivalis and F.alocis are closely related with CP patients in the Korean population.
Bacteria
;
Campylobacter rectus
;
Chronic Periodontitis
;
DNA, Ribosomal
;
Fusobacterium nucleatum
;
Humans
;
Korea
;
Metagenome
;
Periodontal Pocket
;
Periodontitis
;
Polymerase Chain Reaction
;
Porphyromonas endodontalis
;
Porphyromonas gingivalis
;
Prevalence
;
Prevotella nigrescens
;
Tooth
;
Treponema
7.Alteration of Expression of Ca(2+) Signaling Proteins and Adaptation of Ca(2+) Signaling in SERCA2(+/-) Mouse Parotid Acini.
Jong Hoon CHOI ; Hae JO ; Jeong Hee HONG ; Syng Ill LEE ; Dong Min SHIN
Yonsei Medical Journal 2008;49(2):311-321
PURPOSE: The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA), encoded by ATP2A2, is an essential component for G-protein coupled receptor (GPCR)-dependent Ca(2+) signaling. However, whether the changes in Ca(2+) signaling and Ca(2+) signaling proteins in parotid acinar cells are affected by a partial loss of SERCA2 are not known. MATERIALS AND METHODS: In SERCA2(+/-) mouse parotid gland acinar cells, Ca(2+) signaling, expression levels of Ca(2+) signaling proteins, and amylase secretion were investigated. RESULTS: SERCA2(+/-) mice showed decreased SERCA2 expression and an upregulation of the plasma membrane Ca(2+) ATPase. A partial loss of SERCA2 changed the expression level of 1, 4, 5-tris-inositolphosphate receptors (IP(3)Rs), but the localization and activities of IP3Rs were not altered. In SERCA2(+/-) mice, muscarinic stimulation resulted in greater amylase release, and the expression of synaptotagmin was increased compared to wild type mice. CONCLUSION: These results suggest that a partial loss of SERCA2 affects the expression and activity of Ca(2+) signaling proteins in the parotid gland acini, however, overall Ca(2+) signaling is unchanged.
Amylases/metabolism
;
Animals
;
Blotting, Western
;
Calcium/metabolism
;
Calcium Signaling/drug effects/genetics/*physiology
;
Carbachol/pharmacology
;
Immunohistochemistry
;
Inositol 1,4,5-Trisphosphate Receptors/metabolism
;
Mice
;
Mice, Knockout
;
Parotid Gland/*metabolism
;
Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics/*metabolism
;
Signal Transduction/drug effects/genetics/physiology
8.Xylitol Down-Regulates 1alpha,25-Dihydroxy Vitamin D3-induced Osteoclastogenesis via in Part the Inhibition of RANKL Expression in Osteoblasts.
Seung Ho OHK ; Hyunjoo JEONG ; Jong Pill KIM ; Yun Jung YOO ; Jeong Taeg SEO ; Dong Min SHIN ; Syng Ill LEE
International Journal of Oral Biology 2013;38(3):127-134
Xylitol is a sugar alcohol with a variety of functions including bactericidal and anticariogenic effects. However, the cellular mechanisms underlying the role of xylitol in bone metabolism are not yet clarified. In our present study, we exploited the physiological role of xylitol on osteoclast differentiation in a co-culture system of osteoblastic and RAW 264.7 cells. Xylitol treatment of these co-cultures reduced the number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells induced by 10 nM 1alpha,25(OH)2D3 in a dose-dependent manner. A cell viability test revealed no marked cellular damage by up to 100 mM of xylitol. Exposure of osteoblastic cells to xylitol decreased RANKL, but not OPG, mRNA expression in the presence of 10(-8) M 1alpha,25(OH)2D3 in a dose-dependent manner. Furthermore, bone resorption activity, assessed on bone slices in the co-culture system, was found to be dramatically decreased with increasing xylitol concentrations. RANKL and OPG proteins were assayed by ELISA and the soluble RANKL (sRANKL) concentration was decreased with an increased xylitol concentration. In contrast, OPG was unaltered by any xylitol concentration in this assay. These results indicate that xylitol inhibits 1alpha,25(OH)2D3-induced osteoclastogenesis by reducing the sRANKL/OPG expression ratio in osteoblastic cells.
Acid Phosphatase
;
Bone Resorption
;
Cell Survival
;
Coculture Techniques
;
Enzyme-Linked Immunosorbent Assay
;
Isoenzymes
;
Osteoblasts
;
Osteoclasts
;
Proteins
;
RNA, Messenger
;
Vitamins
;
Xylitol
9.Hyperosmotic Stimulus Down-regulates 1alpha, 25-dihydroxyvitamin D3-induced Osteoclastogenesis by Suppressing the RANKL Expression in a Co-culture System.
Yu Shun TIAN ; Hyun Joo JEONG ; Sang Do LEE ; Seok Heui KONG ; Seung Ho OHK ; Yun Jung YOO ; Jeong Taeg SEO ; Dong Min SHIN ; Byung Wha SOHN ; Syng Ill LEE
The Korean Journal of Physiology and Pharmacology 2010;14(3):169-176
The hyperosmotic stimulus is regarded as a mechanical factor for bone remodeling. However, whether the hyperosmotic stimulus affects 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3)-induced osteoclastogenesis is not clear. In the present study, the effect of the hyperosmotic stimulus on 1alpha,25(OH)2D3-induced osteoclastogenesis was investigated in an osteoblast-preosteoclast co-culture system. Serial doses of sucrose were applied as a mechanical force. These hyperosmotic stimuli significantly evoked a reduced number of 1alpha,25(OH)2D3-induced tartrate-resistant acid phosphatase-positive multinucleated cells and 1alpha,25(OH)2D3-induced bone-resorbing pit area in a co-culture system. In osteoblastic cells, receptor activator of nuclear factor kappaB ligand (RANKL) and Runx2 expressions were down-regulated in response to 1alpha,25(OH)2D3. Knockdown of Runx2 inhibited 1alpha,25(OH)2D3-induced RANKL expression in osteoblastic cells. Finally, the hyperosmotic stimulus induced the overexpression of TonEBP in osteoblastic cells. These results suggest that hyperosmolarity leads to the down-regulation of 1alpha,25(OH)2D3-induced osteoclastogenesis, suppressing Runx2 and RANKL expression due to the TonEBP overexpression in osteoblastic cells.
Bone Remodeling
;
Coculture Techniques
;
Down-Regulation
;
Osteoblasts
;
RANK Ligand
;
Sucrose
10.Expression of Ca2+-dependent Synaptotagmin Isoforms in Mouse and Rat Parotid Acinar Cells.
Hae JO ; Hae Mi BYUN ; Jong Hoon KIM ; Min Seuk KIM ; Seung Hyeoi KIM ; Jeong Hee HONG ; Jeong Taeg SEO ; Syng Ill LEE ; Dong Min SHIN ; Heung Kyu SON
Yonsei Medical Journal 2006;47(1):70-77
Synaptotagmin is a Ca2+ sensing protein, which triggers a fusion of synaptic vesicles in neuronal transmission. Little is known regarding the expression of Ca2+ - dependent synaptotagmin isoforms and their contribution to the release of secretory vesicles in mouse and rat parotid acinar cells. We investigated a type of Ca2+ - dependent synaptotagmin and Ca2+ signaling in both rat and mouse parotid acinar cells using RT-PCR, microfluorometry, and amylase assay. Mouse parotid acinar cells exhibited much more sensitive amylase release in response to muscarinic stimulation than did rat parotid acinar cells. However, transient [Ca2+]i increases and Ca2+ influx in response to muscarinic stimulation in both cells were identical, suggesting that the expression or activity of the Ca2+ sensing proteins is different. Seven Ca2+ - dependent synaptotagmins, from 1 to 7, were expressed in the mouse parotid acinar cells. However, in the rat parotid acinar cells, only synaptotagmins 1, 3, 4 and 7 were expressed. These results indicate that the expression of Ca2+ - dependent synaptotagmins may contribute to the release of secretory vesicles in parotid acinar cells.
Synaptotagmins/*metabolism
;
Signal Transduction
;
Rats
;
Protein Isoforms/metabolism
;
Parotid Gland/cytology/*metabolism
;
Muscarinic Agonists/pharmacology
;
Mice
;
Exocytosis/drug effects/physiology
;
Carbachol/pharmacology
;
Calcium/metabolism/*physiology
;
Animals
;
Amylases/secretion