1.3D Histology Using the Synchrotron Radiation Propagation Phase Contrast Cryo-microCT.
Ju Heon KIM ; Sung Mi HAN ; Hyun Ouk SONG ; Youn Kyung SEO ; Young Suk MOON ; Hong Tae KIM
Korean Journal of Physical Anthropology 2018;31(4):133-142
3D histology is a imaging system for the 3D structural information of cells or tissues. The synchrotron radiation propagation phase contrast micro-CT has been used in 3D imaging methods. However, the simple phase contrast micro-CT did not give sufficient micro-structural information when the specimen contains soft elements, as is the case with many biomedical tissue samples. The purpose of this study is to develop a new technique to enhance the phase contrast effect for soft tissue imaging. Experiments were performed at the imaging beam lines of Pohang Accelerator Laboratory (PAL). The biomedical tissue samples under frozen state was mounted on a computer-controlled precision stage and rotated in 0.18° increments through 180°. An X-ray shadow of a specimen was converted into a visual image on the surface of a CdWO4 scintillator that was magnified using a microscopic objective lens (X5 or X20) before being captured with a digital CCD camera. 3-dimensional volume images of the specimen were obtained by applying a filtered back-projection algorithm to the projection images using a software package OCTOPUS. Surface reconstruction and volume segmentation and rendering were performed were performed using Amira software. In this study, We found that synchrotron phase contrast imaging of frozen tissue samples has higher contrast power for soft tissue than that of non-frozen samples. In conclusion, synchrotron radiation propagation phase contrast cryo-microCT imaging offers a promising tool for non-destructive high resolution 3D histology.
Gyeongsangbuk-do
;
Octopodiformes
;
Synchrotrons*
3.Synchrotron Radiation Imaging of Internal Structures in Live Animals.
Kyu Ho LEE ; Yeu Kuang HWU ; Jung Ho JE ; Wen Li TSAI ; Eun Wook CHOI ; Yong Chul KIM ; Hee Joung KIM ; Je Kyung SEONG ; Seung Won YI ; Hyung Sik RYO ; Giorgio MARGARITONDO
Yonsei Medical Journal 2002;43(1):25-30
Ionizing radiation has long been used in medicine since the discovery of X-rays. Diagnostic imaging using synchrotron radiation has been under investigation since Rubenstein et al. reported dual-energy iodine-K-edge subtraction coronary angiography. Recently, computed tomography (CT) and magnetic resonance imaging (MRI) have provided better quality results than conventional radiology, providing important information on human internal structures. However, such techniques are unable to detect fine micron sized structures for the early diagnosis of tumors, vascular diseases and other medical objectives. Third generation synchrotron X-rays are well known for their superiority in coherence and energy tunability with respect to conventional X-rays. Consequently, new contrast mechanisms with a superior spatial resolution are becoming available. Here we present the extremely fine details of live animal internal structures using unmonochromatized synchrotron X-rays (white beam) and a simple detector system. Natural movements of the internal organs are also shown. The results indicate that this imaging technique can be applied to investigating microstructures and evaluating the function of the internal organs. Furthermore, this imaging system may be applied to humans as the next tool beyond CT and MRI.
Animal
;
*Diagnostic Imaging
;
Male
;
Mice
;
Mice, Inbred HRS
;
*Synchrotrons
4.Synchrotron Radiation Imaging of Breast Tissue Using a Phase-contrast Hard X-ray Microscope.
Young Ju JEONG ; Jin Gu BONG ; Sung Hwan PARK
Korean Journal of Medical Physics 2011;22(3):117-123
Synchrotron radiation (SR) imaging enables us to observe internal structures of biologic samples without staining. In this study, we obtained X-ray microscopic images of human breast tissues with 11.1 KeV hard X-ray microscope of the Pohang light source and used zone plates and phase-contrast technique to get high resolution X-ray images. Hard X-ray microscopic images of fibrocystic change and breast cancer tissues with a spatial resolution of 60 nm were obtained and from these images, we could observe the micro-structures of human breast tissue. Also we analyzed and compared these images, which revealed distinct features of each condition. In conclusion, SR imaging with phase-contrast hard X-ray microscope for medical application, especially in breast disease can give some useful information for clinical research.
Breast
;
Breast Diseases
;
Breast Neoplasms
;
Humans
;
Light
;
Synchrotrons
5.The human ear anatomical structure imaging based on x-ray phase-contrast.
Shi HONGLI ; Wang JIE ; Luo SHUQIAN
Chinese Journal of Medical Instrumentation 2010;34(6):396-398
In this paper, the ear anatomic structure imaging is implemented based on X-Ray Phase-Contrast CT. The results of experimentation demonstrate the efficiency of the proposed scheme.
Ear
;
diagnostic imaging
;
Humans
;
Synchrotrons
;
Tomography, X-Ray Computed
;
methods
6.Synchrotron Microangiography of the Rat Heart Using the Langendorff Model.
Woong Han KIM ; Se Hoon CHOI ; Jae Gun KWAK ; Dong Jin KIM ; Se Jin OH ; Dong Jung KIM ; Woo Sung JANG ; Jae Hang LEE ; Eun Suk CHOI ; Young Jun KIM
Korean Circulation Journal 2008;38(9):462-467
BACKGROUND AND OBJECTIVES: The ability to study microvessels of a beating heart in real time at the level of the capillary is essential for research. However, there are no proven methods currently available to achieve this. The conventional absorption-contrast agents have limitations for studying capillaries. Microangiography with using synchrotron phase-contrast X-ray technology and no contrast agent has recently been reported on. We tried to verify this previous report, and we wanted to visualize the microvessels of a rat heart using air as a contrast agent. MATERIALS AND METHODS: We made the Langendorff apparatus in a hutch of the Pohang Accelerator Laboratory. The images were obtained with a white beam and a monochromatic beam. The visual images were magnified using 3x and 20x optical microscope lenses, and the images were captured with a charge-coupled device camera. RESULTS: We could not duplicate the previously reported findings in which microvessels were visualized without the use of contrast agent. But with using air as a contrast agent, the microvasculature of rat hearts was clearly identified at a spatial resolution of 1.2 microm. Air being absorbed inside a capillary was also observed. Vessels under 10 microm diameter were unable to be visualized with using iodine as a contrast agent. CONCLUSION: Phase contrast imaging already allows spatial resolution of 1 microm, which is enough to inspect capillaries. We were able to obtain images of cardiac capillaries with using air as a contrast agent. Yet air has the fatal limitations in that it causes embolism and ischemia. A more suitable contrast agent or imaging method needs to be developed in order to study the microvessels of a beating heart.
Animals
;
Capillaries
;
Contrast Media
;
Embolism
;
Heart
;
Humans
;
Iodine
;
Ischemia
;
Microvessels
;
Rats
;
Synchrotrons
7.Synchrotron Radiation Imaging of Female Breast Tissues Using Phase Contrast Technique.
Young Ju JEONG ; Jin Gu BONG ; Hong Tae KIM ; Jong Ki KIM ; Sang Hoon JHEON ; Hwa Shik YOUN ; Sung Hwan PARK
Journal of Breast Cancer 2008;11(1):40-44
PURPOSE: X-ray microscopy with synchrotron radiation might be a useful tool for novel x-ray imaging in the clinical and laboratory settings. This technique provides detailed images of internal structures non-invasively. It also has the potential to resolve some of the limitations of conventional breast imaging. We evaluated high resolution synchrotron imaging of breast tissues from normal breasts and breasts with fibroadenomas and cancer. METHODS: A new x-ray microscope was installed on the 1B2 beamline of a Pohang Light Source, at a third generation synchrotron radiation facility in Pohang, Korea. The phase contrast x-ray energy was set at 6.95 keV and the x-ray beam was monochromatized by a W/B4C monochromator. Formalinfixed or unfixed female breast tissue from normal breast as well as breasts with fibroadenomas and carcinoma were attached onto the Kapton film. The sample was positioned 25 m away from the beam source. The x-ray image of the sample was converted into a visual image on the CsI (TI) scintillation crystal, and magnified 20 times by the microscopic objective lens. After an additional 10 fold digital magnification, this visual image was captured by a full frame CCD camera. RESULTS: The monochromated x-ray microscopic images of female breast tissue from normal breast, fibroadenoma and carcinoma cases were evaluated. The total magnifying power of the microscope was x200. This synchrotron radiation imaging enabled us to observe detailed structures of breast tissue without sample preparation such as staining or fixation. CONCLUSION: Using monochromated synchrotron radiation, the x-ray microscopic images of the normal breast and breasts with fibroadenomas and cancer were obtained. From the images obtained, the x-ray microscopic imaging of breast tissue with synchrotron radiation appears to have great potential for clinical and research purposes such as oncology studies, early detection of cancer and as an aid to the pathological diagnosis in the future.
Breast
;
Early Detection of Cancer
;
Female
;
Fibroadenoma
;
Humans
;
Korea
;
Light
;
Microscopy
;
Synchrotrons
8.Synchrotron X-ray Microscopic Imaging of Thyroid Tissues.
Jin Gu BONG ; Jung Yun HUANG ; Sung Hwan PARK
Korean Journal of Endocrine Surgery 2010;10(1):19-23
PURPOSE: X-ray microscopy with synchrotron radiation will soon be a useful tool for innovative x-ray imaging in clinical and laboratory settings. It enables us to observe the detailed internal structure of human tissue samples with great magnification power and excellent resolution. So, it has the possibility to be used for the clinical and research purposes to investigate thyroid diseases if it can effectively evaluate the various conditions of thyroid tissue. To determine the relation with their optical microscopic features, we compared the synchrotron X-ray images of unstained normal and thyroid cancer tissue samples with the histopathologic findings of their adjacent, stained thyroid tissue sections. METHODS: An x-ray microscope was installed on a 1B2 beamline with a Pohang Light Source, which is a 3rd generation synchrotron radiation facility with an operating energy of 2.5 GeV at Pohang, Korea. The x-ray energy was set at 11.1 keV and the x-ray beam was monochromatized using a W/B4C monochromator. Formalin-fixed 10µm-thick female thyroid tissues from normal cases and carcinoma cases were attached on Kapton film for the imaging. The sample was positioned 25 m away from the beam source. The x-ray image of the sample was converted into a visual image on the CsI (TI) scintillation crystal, and it was magnified 20 times by the microscopic objective lens. After an additional 10 times digital magnification, this visual image was captured by a full frame CCD camera. RESULTS: The monochromated x-ray microscopic images of the female thyroid tissues of the normal cases and carcinoma cases were obtained with good resolution. These synchrotron images showed the normal follicular structures in the normal thyroid tissue sections and the characteristic severe stromal fibrosis with collagen fiber accumulation in the cancer tissue sections. CONCLUSION: Owing to the great magnification and excellent resolution, the synchrotron x-ray microscopic images of the normal and cancerous thyroid tissues showed good correspondence with the histopathologic findings of their adjacent, stained tissue sections. So, the x-ray microscopic imaging of thyoid tissue using synchrotron radiation has good potential for use in various clinical and research settings in the future.
Collagen
;
Female
;
Fibrosis
;
Gyeongsangbuk-do
;
Humans
;
Korea
;
Microscopy
;
Synchrotrons*
;
Thyroid Diseases
;
Thyroid Gland*
;
Thyroid Neoplasms
10.Simultaneous 3D Visualization of the Microvascular and Neural Network in Mouse Spinal Cord Using Synchrotron Radiation Micro-Computed Tomography.
Liyuan JIANG ; Chengjun LI ; Miao LI ; Xianzhen YIN ; Tianding WU ; Chunyue DUAN ; Yong CAO ; Hongbin LU ; Jianzhong HU
Neuroscience Bulletin 2021;37(10):1469-1480
Effective methods for visualizing neurovascular morphology are essential for understanding the normal spinal cord and the morphological alterations associated with diseases. However, ideal techniques for simultaneously imaging neurovascular structure in a broad region of a specimen are still lacking. In this study, we combined Golgi staining with angiography and synchrotron radiation micro-computed tomography (SRμCT) to visualize the 3D neurovascular network in the mouse spinal cord. Using our method, the 3D neurons, nerve fibers, and vasculature in a broad region could be visualized in the same image at cellular resolution without destructive sectioning. Besides, we found that the 3D morphology of neurons, nerve fiber tracts, and vasculature visualized by SRμCT were highly consistent with that visualized using the histological method. Moreover, the 3D neurovascular structure could be quantitatively evaluated by the combined methodology. The method shown here will be useful in fundamental neuroscience studies.
Animals
;
Imaging, Three-Dimensional
;
Mice
;
Neural Networks, Computer
;
Spinal Cord/diagnostic imaging*
;
Synchrotrons
;
X-Ray Microtomography