1.Leukocyte synapse: structure, function and significance.
Ke-Fu WU ; Guo-Guang ZHENG ; Xiao-Tong MA ; Yu-Hua SONG
Journal of Experimental Hematology 2010;18(4):829-833
Neuronal synapse is the critical structure of neuronal network. Immune system is mainly consisted of invisible network. Recently, evidence showed that leukocyte synapses between immune cells named as immunological synapses (IS), were formed under some functional conditions to form temporal local network. In fact, they are dynamic structures, which can be classified into synapse and kinase. Different leukocytes have different synapses. Inflammatory and leukemic cells showed special patterns of IS. Similar structure is also observed in some viral infected lymphocytes, which is called virological synapse (VS). This is one of the mechanisms for viral transmission, not only enhancing the transmission efficiency but also mediating the escape from antibody neutralization, leading persistent infection. Recently the flower-like poly synapses was reported by French scientists. This is a multi-tunneling nanotube flower-like structure on cell surface. We had observed this kind of structure in EB virus infected human leukemic cell line J6-2. In this paper, the structure and function of leukocyte synapses are reviewed combined with authors' own work. Their significance is discussed.
Humans
;
Immunological Synapses
;
immunology
;
physiology
;
Leukocytes
;
cytology
;
immunology
;
physiology
;
virology
2.Research progress on barrel cortex and its plasticity.
Ming-de HUANG ; Yong HAN ; Yan-qin YU
Journal of Zhejiang University. Medical sciences 2011;40(3):332-337
Synaptic plasticity of barrel cortex is one of the most widely studied topics in neuroscience in recent years. The primary somatosensory cortex of the rodent has a good topology character,which provides an ideal experimental model for plasticity study. This system displays very strong experience-dependent plasticity both during development and in adulthood. The changes of sensory cortex's neural circuit can induce experience-dependent plasticity. In the synaptic level,thalamocortical synapse is considered to be the main location of plasticity. In the circuit level,both synapses from layer 4 to layer 2/3 and those within layer 2/3 are also the necessary parts of achieving synaptic plasticity in primary somatosensory cortex. The GABAergic inhibitory circuit may be involved in this plasticity of S1, but the exact mechanism remains unknown.
Animals
;
Neural Pathways
;
physiology
;
Neuronal Plasticity
;
Somatosensory Cortex
;
physiology
;
Synapses
;
physiology
;
Thalamus
;
physiology
;
Vibrissae
;
physiology
3.Bi-directional Control of Synaptic Input Summation and Spike Generation by GABAergic Inputs at the Axon Initial Segment.
Ziwei SHANG ; Junhao HUANG ; Nan LIU ; Xiaohui ZHANG
Neuroscience Bulletin 2023;39(1):1-13
Differing from other subtypes of inhibitory interneuron, chandelier or axo-axonic cells form depolarizing GABAergic synapses exclusively onto the axon initial segment (AIS) of targeted pyramidal cells (PCs). However, the debate whether these AIS-GABAergic inputs produce excitation or inhibition in neuronal processing is not resolved. Using realistic NEURON modeling and electrophysiological recording of cortical layer-5 PCs, we quantitatively demonstrate that the onset-timing of AIS-GABAergic input, relative to dendritic excitatory glutamatergic inputs, determines its bi-directional regulation of the efficacy of synaptic integration and spike generation in a PC. More specifically, AIS-GABAergic inputs promote the boosting effect of voltage-activated Na+ channels on summed synaptic excitation when they precede glutamatergic inputs by >15 ms, while for nearly concurrent excitatory inputs, they primarily produce a shunting inhibition at the AIS. Thus, our findings offer an integrative mechanism by which AIS-targeting interneurons exert sophisticated regulation of the input-output function in targeted PCs.
Axon Initial Segment
;
Axons/physiology*
;
Neurons
;
Synapses/physiology*
;
Pyramidal Cells/physiology*
;
Interneurons/physiology*
;
Action Potentials/physiology*
5.Role of astrocytes in sensory processing in central nervous system.
Journal of Zhejiang University. Medical sciences 2011;40(6):673-679
There are two types of cells in the central nervous systems (CNS) of mammals-neurons and glia. The structure and function of neurons have been thoroughly studied; while the role of glia in information processing has not been systematically studied because they cannot produce action potentials like neuron. During the past decades, glial cells were considered to play a supportive role in CNS instead of information processing. Recently, a variety of studies suggest that glial cells are actively involved in the regulation of brain function associated with neurons. Glial cells, especially astrocytes play important roles in different sensory processing. In the present article, we review the role of astrocytes in sensory processing in the CNS.
Animals
;
Astrocytes
;
cytology
;
physiology
;
Central Nervous System
;
physiology
;
Humans
;
Sensation
;
physiology
;
Synapses
;
physiology
6.Lighting Up Neural Circuits by Viral Tracing.
Liyao QIU ; Bin ZHANG ; Zhihua GAO
Neuroscience Bulletin 2022;38(11):1383-1396
Neurons are highly interwoven to form intricate neural circuits that underlie the diverse functions of the brain. Dissecting the anatomical organization of neural circuits is key to deciphering how the brain processes information, produces thoughts, and instructs behaviors. Over the past decades, recombinant viral vectors have become the most commonly used tracing tools to define circuit architecture. In this review, we introduce the current categories of viral tools and their proper application in circuit tracing. We further discuss some advances in viral tracing strategy and prospective innovations of viral tools for future study.
Synapses/physiology*
;
Prospective Studies
;
Neurons/physiology*
;
Genetic Vectors
;
Brain/physiology*
;
Neural Pathways/physiology*
7.Excitatory postsynaptic potential evoked by stimulation of the ventrolateral region of the cerebellum in crucian carp Mauthner cell.
Ying-Cai ZHANG ; Shu-Hua ZHANG ; Xiao-Yi LI ; Xue-Hong TONG ; Fen YU ; Mao-Xian ZHANG
Acta Physiologica Sinica 2003;55(4):459-463
In the present experiments, the characteristics of the electrical responses to stimulation of the cerebellum in crucian carp Mauthner cell were explored with microeletrode intracellular recording technique. A composite excitatory postsynaptic potential (cerebellum-evoked EPSP) could be induced from the soma, the ventral dendrite and the proximal end of the lateral dendrite in crucian carp Mauthner cell (M-cell) on either side by stimulation of the ventrolateral region of the cerebellum. The cerebellum-evoked EPSP presented characteristics of relatively short latency (0.63+/-0.09 ms), longer duration (5.49+/-1.13 ms), graded amplitude and dependence on stimulation frequency. Stimulation of the cerebellum with higher intensity always activated the M-cell orthodromically. Multiple intracellular recordings showed that the cerebellum-evoked EPSP originated in the distal end of the ventral dendrite. The results suggest that the cerebellum-M-cell pathway is probably composed of a group of neuron chains with different numbers of synaptic relays projecting to the distal end of the ventral dendrite in order of length of the chains.
Animals
;
Carps
;
physiology
;
Cerebellum
;
physiology
;
Dendrites
;
physiology
;
Electric Stimulation
;
Excitatory Postsynaptic Potentials
;
physiology
;
Neurons
;
physiology
;
Synapses
;
physiology
;
Synaptic Transmission
;
physiology
8.Cell adhesion and synaptogenesis.
Gong CHEN ; Xia WU ; Sebnem TUNCDEMIR
Acta Physiologica Sinica 2007;59(6):697-706
Synapses are inter-neuronal connections that are fundamental working units in neural networks. How synapses are molecularly constructed is a fascinating question, which attracted scientists' attention for many decades. Neuromuscular junction, a field pioneered by Te-Pei FENG and many others, has been an excellent model for studying synaptogenesis and paved the way for our understanding of the synapse formation in the central nervous system. Recent studies shed new light on the molecular mechanisms of central synapse formation by discovering a group of cell adhesion molecules exerting potent synaptogenic effects. This review will focus on those cell adhesion molecules which can induce central synapse formation when expressed in non-neuronal cells.
Cell Adhesion
;
Cell Adhesion Molecules
;
physiology
;
Humans
;
Neuromuscular Junction
;
physiology
;
Synapses
;
physiology
9.Long-term plasticity of HVC-RA synapses in adult male zebra finches.
Acta Physiologica Sinica 2013;65(6):586-592
Long-term synaptic plasticity is considered as a key part of the neural mechanism of learning and memory. The production of learned vocalization of male zebra finches is closely related to high vocal center (HVC)-robust nucleus of the arcopallium (RA) pathway. However, the long-term plasticity of HVC-RA synapses is unclear. This study investigated the long-term plasticity of HVC-RA synapses in adult male zebra finches through in vivo field potential recording. The results showed that physiologic stimulation, i.e., δ rhythmic stimulation and low frequency stimulation could not effectively induce long-term synaptic plasticity. The former leaded to no change of the amplitudes of evoked population spikes, and the latter induced short-term depression (STD) of the amplitudes of the second evoked population spikes caused by paired pulses. But high frequency stimulation induced long-term depression (LTD) of the amplitudes of evoked population spikes to show out long-term synaptic plasticity. These results suggest that LTD represents the long-term plasticity of HVC-RA synapses in adult male zebra finches, which may be a key part of the neural mechanism of vocal learning and memory and can explain the plasticity of adult song to some degree.
Animals
;
Evoked Potentials, Auditory
;
Finches
;
physiology
;
High Vocal Center
;
physiology
;
Learning
;
Male
;
Neuronal Plasticity
;
Synapses
;
physiology
10.Projection-Specific Heterogeneity of the Axon Initial Segment of Pyramidal Neurons in the Prelimbic Cortex.
Ankang HU ; Rui ZHAO ; Baihui REN ; Yang LI ; Jiangteng LU ; Yilin TAI
Neuroscience Bulletin 2023;39(7):1050-1068
The axon initial segment (AIS) is a highly specialized axonal compartment where the action potential is initiated. The heterogeneity of AISs has been suggested to occur between interneurons and pyramidal neurons (PyNs), which likely contributes to their unique spiking properties. However, whether the various characteristics of AISs can be linked to specific PyN subtypes remains unknown. Here, we report that in the prelimbic cortex (PL) of the mouse, two types of PyNs with axon projections either to the contralateral PL or to the ipsilateral basal lateral amygdala, possess distinct AIS properties reflected by morphology, ion channel expression, action potential initiation, and axo-axonic synaptic inputs from chandelier cells. Furthermore, projection-specific AIS diversity is more prominent in the superficial layer than in the deep layer. Thus, our study reveals the cortical layer- and axon projection-specific heterogeneity of PyN AISs, which may endow the spiking of various PyN types with exquisite modulation.
Mice
;
Animals
;
Axon Initial Segment
;
Synapses/physiology*
;
Pyramidal Cells/physiology*
;
Cerebral Cortex
;
Axons/physiology*