1.Altered Renal Sodium Transporter Expression in an Animal Model of Type 2 Diabetes Mellitus.
Yun Kyu OH ; Kwon Wook JOO ; Jay Wook LEE ; Un Sil JEON ; Chun Soo LIM ; Jin Suk HAN ; Mark A KNEPPER ; Ki Young NA
Journal of Korean Medical Science 2007;22(6):1034-1041
Hemodynamic factors play an important role in the development and/or progression of diabetic nephropathy. We hypothesized that renal sodium transporter dysregulation might contribute to the hemodynamic alterations in diabetic nephropathy. Otsuka Long Evans Tokushima Fatty (OLETF) rats were used as an animal model for type 2 diabetes. Long Evans Tokushima (LETO) rats were used as controls. Renal sodium transporter regulation was investigated by semiquantitative immunoblotting and immunohistochemistry of the kidneys of 40-week-old animals. The mean serum glucose level in OLETF rats was increased to 235+/-25 mg/dL at 25 weeks, and the hyperglycemia continued up to the end of 40 weeks. Urine protein/ creatinine ratios were 10 times higher in OLETF rats than in LETO rats. At 40th week, the abundance of the epithelial sodium channel (ENaC) beta-subunit was increased in OLETF rats, but the abundance of the ENaC gamma-subunit was decreased. No significant differences were observed in the ENaC alpha-subunit or other major sodium transporters. Immunohistochemistry for the ENaC beta-subunit showed increased immunoreactivity in OLETF rats, whereas the ENaC gamma-subunit showed reduced immunoreactivity in these rats. In OLETF rats, ENaC beta-subunit upregulation and ENaC gamma-subunit downregulation after the development of diabetic nephropathy may reflect an abnormal sodium balance.
Animals
;
Blood Glucose/analysis
;
Diabetes Mellitus, Type 2/*metabolism
;
*Disease Models, Animal
;
Epithelial Sodium Channel/*analysis
;
Hypertension/complications
;
Immunoblotting
;
Immunohistochemistry
;
Kidney/*metabolism
;
Male
;
Rats
;
Sodium/*metabolism
;
Sodium-Hydrogen Antiporter/genetics
;
Sodium-Potassium-Chloride Symporters/genetics
2.B-RafV600E inhibits sodium iodide symporter expression via regulation of DNA methyltransferase 1.
Yong Won CHOI ; Hyun Ju KIM ; Young Hwa KIM ; So Hyun PARK ; Yong Jun CHWAE ; Jeonghun LEE ; Euy Young SOH ; Jang Hee KIM ; Tae Jun PARK
Experimental & Molecular Medicine 2014;46(11):e120-
B-RafV600E mutant is found in 40-70% of papillary thyroid carcinoma (PTC) and has an important role in the pathogenesis of PTC. The sodium iodide symporter (NIS) is an integral plasma membrane glycoprotein that mediates active iodide transport into the thyroid follicular cells, and B-RafV600E has been known to be associated with the loss of NIS expression. In this study, we found that B-RafV600E inhibited NIS expression by the upregulation of its promoter methylation, and that specific regions of CpG islands of NIS promoter in B-RafV600E harboring PTC were highly methylated compared with surrounding normal tissue. Although DNA methyltransferase 3a and 3b (DNMT3a,3b) were not increased by B-RafV600E, DNMT1 expression was markedly upregulated in PTC and B-RafV600E expressing thyrocytes. Furthermore, DNMT1 expression was upregulated by B-RafV600E induced NF-kappaB activation. These results led us to conclude that NIS promoter methylation, which was induced by B-RafV600E, is one of the possible mechanisms involved in NIS downregulation in PTC.
Base Sequence
;
Carcinoma/*genetics/metabolism/pathology
;
Cells, Cultured
;
DNA (Cytosine-5-)-Methyltransferase/analysis/*genetics/metabolism
;
DNA Methylation
;
Down-Regulation
;
*Gene Expression Regulation, Neoplastic
;
Humans
;
Molecular Sequence Data
;
*Point Mutation
;
Promoter Regions, Genetic
;
Proto-Oncogene Proteins B-raf/*genetics/metabolism
;
Symporters/analysis/*genetics/metabolism
;
Thyroid Gland/cytology/metabolism/pathology
;
Thyroid Neoplasms/*genetics/metabolism/pathology
;
Up-Regulation
3.Altered expression of renal bumetanide-sensitive sodium-potassium-2 chloride cotransporter and Cl- channel -K2 gene in angiotensin II-infused hypertensive rats.
Tao YE ; Zhi-quan LIU ; Chao-feng SUN ; Yong ZHENG ; Ai-qun MA ; Yuan FANG
Chinese Medical Journal 2005;118(23):1945-1951
BACKGROUNDLittle information is available regarding the effect of angiotensin II (Ang II) on the bumetanide-sensitive sodium-potassium-2 chloride cotransporter (NKCC2), the thiazide-sensitive sodium-chloride cotransporter (NCC), and the Cl- channel (CLC)-K2 at both mRNA and protein expression level in Ang II-induced hypertensive rats. This study was conducted to investigate the influence of Ang II with chronic subpressor infusion on nephron-specific gene expression of NKCC2, NCC and CLC-K2.
METHODSSprague Dawleys rats were treated subcutaneously with either Ang II (100 ng.kg-1.min-1) or vehicle for 14 days. Expression of NKCC2, NCC and CLC-K2 mRNA in kidneys was determined by real time polymerase chain reaction (PCR). Western blotting analysis was used to measure NKCC2 and NCC protein expression.
RESULTSAng II significantly increased blood pressure and up-regulated NKCC2 mRNA and protein expression in the kidney. Expression of CLC-K2 mRNA in the kidney increased 1.6 fold (P < 0.05). There were no changes in NCC mRNA or protein expression in AngII-treated rats versus control.
CONCLUSIONSChronic subpressor Ang II infusion can significantly alter NKCC2 and CLC-K2 mRNA expression in the kidney, and protein abundance of NKCC2 in kidney is positively regulated by Ang II. These effects may contribute to enhanced renal Na+ and Cl- reabsorption in response to Ang II.
Angiotensin II ; pharmacology ; Animals ; Blood Pressure ; drug effects ; Gene Expression Regulation ; drug effects ; Hypertension ; chemically induced ; metabolism ; Male ; RNA, Messenger ; analysis ; Rats ; Rats, Sprague-Dawley ; Sodium-Potassium-Chloride Symporters ; genetics ; Solute Carrier Family 12, Member 1