1.Nucleus transfer efficiency of ear fibroblast cells isolated from Bama miniature pigs at various ages.
Qing-Hua WANG ; Yun PENG ; Xin-Yong CAI ; Meng WAN ; Yu LIU ; Hong WEI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(4):585-590
Somatic cell nucleus transfer (SCNT) has been considered the most effective method for conserving endangered animals and expanding the quantity of adult animal models. Bama miniature pigs are genetically stable and share similar biological features to humans. These pigs have been used to establish animal models for human diseases, and for many other applications. However, there is a paucity of studies on the effect of ear fibroblasts derived from different age of adult Bama miniature pigs on nucleus transfer (NT). The present study examined the NT efficiency of ear fibroblasts from fetal, newborn, 1-, 2-, 4-, 6-, 12-month-old miniature pigs by using trypan blue staining, flow cytometry and NT technique, etc., and the cell biological function and SCNT efficiency were compared between groups. The results showed that ear fibroblasts grew well after passage in each group. Spindle-shaped cells initially predominated, and gradually declined with increase of culture time and replaced by polygonal cells. Irregular cell growth occurred in the 2-month-old group and the elder groups. The growth curves of the ear fibroblasts were "S-shaped" in different age groups. The cell proliferation of postnatal ear fibroblasts, especially those from 2-, 4-, 6-, 12-month-old miniature pigs was significantly different from that of fetus ear fibroblasts (P<0.05 or P<0.01). Two-month- and 4-month-old ear fibroblasts had a significantly higher proportion of G1 stage cells (85% to 91%) than those at 6 and 12 months (66% to 74%, P<0.01). The blastocyst rate of reconstructed embryos originating from newborn, 1-, 2-, 4-month-old donor pigs was 6.06% to 7.69% with no significant difference from that in fetus fibroblast group (8.06%). It was concluded that <4-month-old adult Bama miniature pigs represent a better donor cell resource than elder pigs.
Animals
;
Blastocyst
;
physiology
;
Cell Proliferation
;
Cells, Cultured
;
Ear
;
embryology
;
growth & development
;
Fibroblasts
;
cytology
;
physiology
;
transplantation
;
Nuclear Transfer Techniques
;
Swine
;
Swine, Miniature
;
anatomy & histology
;
embryology
;
growth & development
2.Study on vitrification of porcine embryos by open pulled straw method.
De-Fu ZHANG ; Dong LIU ; Hua-Li WU ; Xiao-Feng ZHENG ; Zhao-Kai WANG ; Shao-Bing WANG
Chinese Journal of Biotechnology 2006;22(5):845-849
291 embryos (Blastocyst/Morula) from 20 donor sows were vitrified by two step method with OPS (open pulled straw) in solution I (TCM199 + 20% FBS + 10% EG + 10% DMSO) for 3min, and solution II (TCM199 + 20% FBS + 20% EG + 20% DMSO + 0.4mol/L SUC) for 1min, stored in liquid nitrogen for 3 months, and transferred into 8 recipient sows after warming, one recipient sow was pregnant and 8 alive piglets were born. This is the first paper to report getting alive piglets by vitrification in China.
Animals
;
Blastocyst
;
physiology
;
Cryopreservation
;
methods
;
veterinary
;
Embryo Transfer
;
Female
;
Pregnancy
;
Swine
;
embryology
3.Autologous somatic cell nuclear transfer in pigs using recipient oocytes and donor cells from the same animal.
Journal of Veterinary Science 2007;8(4):415-421
The objective of the present study was to examine the feasibility of the production of autologous porcine somatic cell nuclear transfer (SCNT) blastocysts using oocytes and donor cells from slaughtered ovaries. Therefore, we attempted to optimize autologous SCNT by examining the effects of electrical fusion conditions and donor cell type on cell fusion and the development of SCNT embryos. Four types of donor cells were used: 1) denuded cumulus cells (DCCs) collected from in vitro-matured (IVM) oocytes; 2) cumulus cells collected from oocytes after 22 h of IVM and cultured for 18 h (CCCs); 3) follicular cells obtained from follicular contents and cultured for 40 h (CFCs); and 4) adult skin fibroblasts. The DCCs showed a significantly (p > 0.01) lower rate of fusion than the CCCs when two pulses of 170 V/mm DC were applied for 50 microsec (19 +/- 2% vs. 77 +/- 3%). The rate of DCC fusion with oocytes was increased by the application of two DC pulses of 190 V/mm for 30 microsec, although this was still lower than the rate of fusion in the CCCs (33 +/- 1% vs. 80 +/- 2%). The rates of cleavage (57 +/- 5%) and blastocyst formation (1 +/- 1%) in the DCC-derived embryos did not differ from those (55 +/- 6% and 3 +/- 1%, respectively) in the CCC-derived SCNT embryos. Autologous SCNT embryos derived from CFCs (5 +/- 2%) showed higher levels of blastocyst formation (p > 0.01) than CCC-derived autologous SCNT embryos (1 +/- 0%). In conclusion, the results of the present study show that culturing cumulus and follicular cells before SCNT enhances cell fusion with oocytes and that CFCs are superior to CCCs in the production of higher numbers of autologous SCNT blastocysts.
Animals
;
*Animals, Genetically Modified
;
Cloning, Organism
;
Cumulus Cells/metabolism
;
Electric Stimulation
;
Embryo Culture Techniques/veterinary
;
Embryonic Development
;
Female
;
Fibroblasts/metabolism
;
Nuclear Transfer Techniques/*veterinary
;
Oocytes/*metabolism
;
Ovarian Follicle/metabolism
;
Swine/embryology/*physiology
4.Cloning and gene expression of sall4b gene in pig.
Xinmiao ZHANG ; Xiaojiao HAN ; Wenteng HE ; Shichao LIU ; Yanshuang MU ; Kui HU ; Zhonghua LIU
Chinese Journal of Biotechnology 2012;28(10):1164-1174
Sall4, a member of sall4 gene family, plays important roles in embryo development; organogenesis as well as pluripotency maintenance and re-establishment. There are two isoforms of Sall4, Sall4A and Sall4B. The sequence of porcine sall4 gene is still not reported. Because of its distinct role in maintaining the pluripotent state of stem cells, we cloned and sequenced porcine sall4 gene and assessed its expression in pig tissues and embryos. One 2 372 bp nucleotide sequence representing the full-length cDNA of pig sall4 was obtained by 5'and 3'RACE. Analyses of putative protein sequence showed a 70% to 80% identity with isoform Sall4B of human and mouse. Comparing with Sall4A, the identity reduced to 30% to 55% because of the loss of a zinc-finger domain-rich fragment. Assessment of sall4b expression in porcine tissues by Real-time PCR showed that it expressed most strongly in ovary and stronger in spleen, lung, heart and testis. For preimplantation embryos, the expression level was lower in 4-cell embryos compared with other stages. Immuno-fluorescence analysis of Sall4 on porcine preimplantation embryos indicated that it expressed in all the preimplantation embryos and located in nucleus, in blastocyst it preferentially limited in ICM cells. Expression pattern in early embryos suggest that pig sall4b is associated with pluripotency and might be a new and useful reprogramming factor for establishing pig induced pluripotent stem cell lines.
Amino Acid Sequence
;
Animals
;
Base Sequence
;
Cloning, Molecular
;
DNA-Binding Proteins
;
genetics
;
Embryonic Development
;
genetics
;
Female
;
Gene Expression Regulation, Developmental
;
Humans
;
Mice
;
Molecular Sequence Data
;
Ovary
;
metabolism
;
Swine
;
embryology
;
genetics
;
metabolism
;
Transcription Factors
;
genetics
;
Transcription, Genetic
;
physiology