1.Production of cloned sei whale (Balaenoptera borealis) embryos by interspecies somatic cell nuclear transfer using enucleated pig oocytes.
Eunsong LEE ; Mohammad Musharraf Uddin BHUIYAN ; Hiroyuki WATANABE ; Kohji MATSUOKA ; Yoshihiro FUJISE ; Hajime ISHIKAWA ; Yutaka FUKUI
Journal of Veterinary Science 2009;10(4):285-292
In this study, we examined the feasibility of using subzonal cell injection with electrofusion for interspecies somatic cell nuclear transfer (iSCNT) to produce sei whale embryos and to improve their developmental capacity by investigating the effect of osmolarity and macromolecules in the culture medium on the in vitro developmental capacity. Hybrid embryos produced by the electrofusion of fetal whale fibroblasts with enucleated porcine oocytes were cultured in modified porcine zygote medium-3 to examine the effects of osmolarity and fetal serum on their in vitro developmental capacity. More than 66% of the whale somatic cells successfully fused with the porcine oocytes following electrofusion. A portion (60~81%) of the iSCNT whale embryos developed to the two- to four-cell stages, but no embryos were able to reach the blastocyst stage. This developmental arrest was not overcome by increasing the osmolarity of the medium to 360 mOsm or by the addition of fetal bovine or fetal whale serum. Our results demonstrate that sei whale-porcine hybrid embryos may be produced by SCNT using subzonal injection and electrofusion. The pig oocytes partly supported the remodeling and reprogramming of the sei whale somatic cell nuclei, but they were unable to support the development of iSCNT whale embryos to the blastocyst stage.
Animals
;
Cloning, Organism/*veterinary
;
Culture Media
;
Embryo, Mammalian
;
Karyotyping
;
Nuclear Transfer Techniques/*veterinary
;
*Oocytes
;
Swine/*embryology
;
Whales/*embryology
2.Nucleus transfer efficiency of ear fibroblast cells isolated from Bama miniature pigs at various ages.
Qing-Hua WANG ; Yun PENG ; Xin-Yong CAI ; Meng WAN ; Yu LIU ; Hong WEI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(4):585-590
Somatic cell nucleus transfer (SCNT) has been considered the most effective method for conserving endangered animals and expanding the quantity of adult animal models. Bama miniature pigs are genetically stable and share similar biological features to humans. These pigs have been used to establish animal models for human diseases, and for many other applications. However, there is a paucity of studies on the effect of ear fibroblasts derived from different age of adult Bama miniature pigs on nucleus transfer (NT). The present study examined the NT efficiency of ear fibroblasts from fetal, newborn, 1-, 2-, 4-, 6-, 12-month-old miniature pigs by using trypan blue staining, flow cytometry and NT technique, etc., and the cell biological function and SCNT efficiency were compared between groups. The results showed that ear fibroblasts grew well after passage in each group. Spindle-shaped cells initially predominated, and gradually declined with increase of culture time and replaced by polygonal cells. Irregular cell growth occurred in the 2-month-old group and the elder groups. The growth curves of the ear fibroblasts were "S-shaped" in different age groups. The cell proliferation of postnatal ear fibroblasts, especially those from 2-, 4-, 6-, 12-month-old miniature pigs was significantly different from that of fetus ear fibroblasts (P<0.05 or P<0.01). Two-month- and 4-month-old ear fibroblasts had a significantly higher proportion of G1 stage cells (85% to 91%) than those at 6 and 12 months (66% to 74%, P<0.01). The blastocyst rate of reconstructed embryos originating from newborn, 1-, 2-, 4-month-old donor pigs was 6.06% to 7.69% with no significant difference from that in fetus fibroblast group (8.06%). It was concluded that <4-month-old adult Bama miniature pigs represent a better donor cell resource than elder pigs.
Animals
;
Blastocyst
;
physiology
;
Cell Proliferation
;
Cells, Cultured
;
Ear
;
embryology
;
growth & development
;
Fibroblasts
;
cytology
;
physiology
;
transplantation
;
Nuclear Transfer Techniques
;
Swine
;
Swine, Miniature
;
anatomy & histology
;
embryology
;
growth & development
3.Targeting efficiency of a-1,3-galactosyl transferase gene in pig fetal fibroblast cells.
Dong Il JIN ; Seung Hyeon LEE ; Jin Hee CHOI ; Jae Seon LEE ; Jong Eun LEE ; Kwang Wook PARK ; Jeong Sun SEO
Experimental & Molecular Medicine 2003;35(6):572-577
Animal cloning technology with somatic cells provides an alternative tool to conventional methods for producing transgenic animals. Gene targeting in animals is made feasible using somatic cells with homologous recombination procedure that is a major technique in embryonic stem cells for knocking-out genes. Homologous recombination events in somatic cells are relatively inefficient as compared to those in ES cells, suggesting the need for establishment of efficient gene targeting system in somatic cells. To investigate the efficiency of positive and negative selection for gene targeting in pig fetal fibroblast cells, pig alpha-1,3-galactosyl transferase (13-GT) gene was used for gene targeting. The neomycin phosphotransferase (Neo(r)) and herpes simplex virus-thymidine kinase (HSV-tk) genes were used as positive and negative selection markers in this experiment. Following transfection with targeting DNA construct, the pig fetal fibroblast cells were selected against resistance of G418 and gancyclovir. In DMEM medium containing 5 to 10% serum, Pig fetal fibroblast cells failed to proliferate during drug selection. Increasing serum concentration to 15% of medium yielded less senescent colonies of pig fetal fibroblast cells following drug selection that allowed enough cell colonies to screen genomic DNA. The frequency of gene targeting in pig fetal fibroblast cells with double drug selection was more than 10-fold efficient compared to that with G418 single selection. Double selection method with Neo' and HSV-tk genes could be useful for gene targeting in somatic cells for production of cloned animals carrying targeted endogenous genes.
Animals
;
Fibroblasts
;
Galactosyltransferases/*genetics/*metabolism
;
*Gene Targeting
;
Genetic Vectors/genetics
;
Polymerase Chain Reaction
;
Swine/*embryology/genetics
4.Study on vitrification of porcine embryos by open pulled straw method.
De-Fu ZHANG ; Dong LIU ; Hua-Li WU ; Xiao-Feng ZHENG ; Zhao-Kai WANG ; Shao-Bing WANG
Chinese Journal of Biotechnology 2006;22(5):845-849
291 embryos (Blastocyst/Morula) from 20 donor sows were vitrified by two step method with OPS (open pulled straw) in solution I (TCM199 + 20% FBS + 10% EG + 10% DMSO) for 3min, and solution II (TCM199 + 20% FBS + 20% EG + 20% DMSO + 0.4mol/L SUC) for 1min, stored in liquid nitrogen for 3 months, and transferred into 8 recipient sows after warming, one recipient sow was pregnant and 8 alive piglets were born. This is the first paper to report getting alive piglets by vitrification in China.
Animals
;
Blastocyst
;
physiology
;
Cryopreservation
;
methods
;
veterinary
;
Embryo Transfer
;
Female
;
Pregnancy
;
Swine
;
embryology
5.The GATA family in reproduction.
Cai-xia JING ; Jia-zhou YANG ; Qing-yan AI ; Nai-zhou MIAO ; Yu-feng ZHAO ; Yan-mei WANG
National Journal of Andrology 2009;15(10):932-936
The GATA family proteins are a group of zinc finger transcription factors that are expressed in human and mammalian animals and play an important role in mammalian organ morphogenesis, cell proliferation and sex differentiation. GATA-4 and GATA-6 have been identified in the ovaries and testes of humans, mice, pigs and chickens. GATA-4 contributes to fetal male gonadal development by regulating the genes that mediate Müllerian duct regression and the onset of testosterone production. GATA-4 and GATA-6 are localized in and regulate the function of the ovarian and testicular somatic cells of fetal mice, especially granulosa cells, thecal cells, Sertoli cells and Leydig cells. GATA-4 is also present in the germ cells of fetal and prepubertal mice.
Animals
;
Chickens
;
Female
;
GATA4 Transcription Factor
;
metabolism
;
GATA6 Transcription Factor
;
metabolism
;
Humans
;
Male
;
Mice
;
Ovary
;
embryology
;
Reproduction
;
Swine
;
Testis
;
embryology
;
Transcription Factors
;
classification
6.Sequence Analysis and Molecular Characterization of Wnt4 Gene in Metacestodes of Taenia solium.
Junling HOU ; Xuenong LUO ; Shuai WANG ; Cai YIN ; Shaohua ZHANG ; Xueliang ZHU ; Yongxi DOU ; Xuepeng CAI
The Korean Journal of Parasitology 2014;52(2):163-168
Wnt proteins are a family of secreted glycoproteins that are evolutionarily conserved and considered to be involved in extensive developmental processes in metazoan organisms. The characterization of wnt genes may improve understanding the parasite's development. In the present study, a wnt4 gene encoding 491amino acids was amplified from cDNA of metacestodes of Taenia solium using reverse transcription PCR (RT-PCR). Bioinformatics tools were used for sequence analysis. The conserved domain of the wnt gene family was predicted. The expression profile of Wnt4 was investigated using real-time PCR. Wnt4 expression was found to be dramatically increased in scolex evaginated cysticerci when compared to invaginated cysticerci. In situ hybridization showed that wnt4 gene was distributed in the posterior end of the worm along the primary body axis in evaginated cysticerci. These findings indicated that wnt4 may take part in the process of cysticerci evagination and play a role in scolex/bladder development of cysticerci of T. solium.
Animals
;
Base Sequence
;
Cysticercosis/pathology
;
Cysticercus/enzymology/*genetics
;
DNA, Helminth/*genetics
;
Gene Expression Regulation
;
Humans
;
In Situ Hybridization
;
Real-Time Polymerase Chain Reaction
;
Sequence Analysis, DNA
;
Sus scrofa
;
Swine
;
Swine Diseases
;
Taenia solium/embryology/enzymology/*genetics
;
Wnt4 Protein/*genetics
7.A simplified one-step nuclear transfer procedure alters the gene expression patterns and developmental potential of cloned porcine embryos.
Sang Kyu PARK ; Sangho ROH ; Jong Im PARK
Journal of Veterinary Science 2014;15(1):73-80
Various somatic cell nuclear transfer (SCNT) techniques for mammalian species have been developed to adjust species-specific procedures to oocyte-associated differences among species. Species-specific SCNT protocols may result in different expression levels of developmentally important genes that may affect embryonic development and pregnancy. In the present study, porcine oocytes were treated with demecolcine that facilitated enucleation with protruding genetic material. Enucleation and donor cell injection were performed either simultaneously with a single pipette (simplified one-step SCNT; SONT) or separately with different pipettes (conventional two-step SCNT; CTNT) as the control procedure. After blastocysts from both groups were cultured in vitro, the expression levels of developmentally important genes (OCT4, NANOG, EOMES, CDX2, GLUT-1, PolyA, and HSP70) were analyzed by real-time quantitative polymerase chain reaction. Both the developmental rate according to blastocyst stage as well as the expression levels CDX2, EOMES, and HSP70 were elevated with SONT compared to CTNT. The genes with elevated expression are known to influence trophectoderm formation and heat stress-induced arrest. These results showed that our SONT technique improved the development of SCNT porcine embryos, and increased the expression of genes that are important for placental formation and stress-induced arrest.
Animals
;
Biological Markers/metabolism
;
Cloning, Organism
;
Embryo, Mammalian/metabolism
;
Female
;
*Gene Expression Regulation, Developmental
;
Nuclear Transfer Techniques/instrumentation/*veterinary
;
Oocytes/metabolism
;
Pregnancy
;
Real-Time Polymerase Chain Reaction
;
Swine/*embryology/*genetics
8.Autologous somatic cell nuclear transfer in pigs using recipient oocytes and donor cells from the same animal.
Journal of Veterinary Science 2007;8(4):415-421
The objective of the present study was to examine the feasibility of the production of autologous porcine somatic cell nuclear transfer (SCNT) blastocysts using oocytes and donor cells from slaughtered ovaries. Therefore, we attempted to optimize autologous SCNT by examining the effects of electrical fusion conditions and donor cell type on cell fusion and the development of SCNT embryos. Four types of donor cells were used: 1) denuded cumulus cells (DCCs) collected from in vitro-matured (IVM) oocytes; 2) cumulus cells collected from oocytes after 22 h of IVM and cultured for 18 h (CCCs); 3) follicular cells obtained from follicular contents and cultured for 40 h (CFCs); and 4) adult skin fibroblasts. The DCCs showed a significantly (p > 0.01) lower rate of fusion than the CCCs when two pulses of 170 V/mm DC were applied for 50 microsec (19 +/- 2% vs. 77 +/- 3%). The rate of DCC fusion with oocytes was increased by the application of two DC pulses of 190 V/mm for 30 microsec, although this was still lower than the rate of fusion in the CCCs (33 +/- 1% vs. 80 +/- 2%). The rates of cleavage (57 +/- 5%) and blastocyst formation (1 +/- 1%) in the DCC-derived embryos did not differ from those (55 +/- 6% and 3 +/- 1%, respectively) in the CCC-derived SCNT embryos. Autologous SCNT embryos derived from CFCs (5 +/- 2%) showed higher levels of blastocyst formation (p > 0.01) than CCC-derived autologous SCNT embryos (1 +/- 0%). In conclusion, the results of the present study show that culturing cumulus and follicular cells before SCNT enhances cell fusion with oocytes and that CFCs are superior to CCCs in the production of higher numbers of autologous SCNT blastocysts.
Animals
;
*Animals, Genetically Modified
;
Cloning, Organism
;
Cumulus Cells/metabolism
;
Electric Stimulation
;
Embryo Culture Techniques/veterinary
;
Embryonic Development
;
Female
;
Fibroblasts/metabolism
;
Nuclear Transfer Techniques/*veterinary
;
Oocytes/*metabolism
;
Ovarian Follicle/metabolism
;
Swine/embryology/*physiology
9.Cloning and gene expression of sall4b gene in pig.
Xinmiao ZHANG ; Xiaojiao HAN ; Wenteng HE ; Shichao LIU ; Yanshuang MU ; Kui HU ; Zhonghua LIU
Chinese Journal of Biotechnology 2012;28(10):1164-1174
Sall4, a member of sall4 gene family, plays important roles in embryo development; organogenesis as well as pluripotency maintenance and re-establishment. There are two isoforms of Sall4, Sall4A and Sall4B. The sequence of porcine sall4 gene is still not reported. Because of its distinct role in maintaining the pluripotent state of stem cells, we cloned and sequenced porcine sall4 gene and assessed its expression in pig tissues and embryos. One 2 372 bp nucleotide sequence representing the full-length cDNA of pig sall4 was obtained by 5'and 3'RACE. Analyses of putative protein sequence showed a 70% to 80% identity with isoform Sall4B of human and mouse. Comparing with Sall4A, the identity reduced to 30% to 55% because of the loss of a zinc-finger domain-rich fragment. Assessment of sall4b expression in porcine tissues by Real-time PCR showed that it expressed most strongly in ovary and stronger in spleen, lung, heart and testis. For preimplantation embryos, the expression level was lower in 4-cell embryos compared with other stages. Immuno-fluorescence analysis of Sall4 on porcine preimplantation embryos indicated that it expressed in all the preimplantation embryos and located in nucleus, in blastocyst it preferentially limited in ICM cells. Expression pattern in early embryos suggest that pig sall4b is associated with pluripotency and might be a new and useful reprogramming factor for establishing pig induced pluripotent stem cell lines.
Amino Acid Sequence
;
Animals
;
Base Sequence
;
Cloning, Molecular
;
DNA-Binding Proteins
;
genetics
;
Embryonic Development
;
genetics
;
Female
;
Gene Expression Regulation, Developmental
;
Humans
;
Mice
;
Molecular Sequence Data
;
Ovary
;
metabolism
;
Swine
;
embryology
;
genetics
;
metabolism
;
Transcription Factors
;
genetics
;
Transcription, Genetic
;
physiology