1.Slow rise of intracellular Ca(2+) concentration in rat primary sensory neurons triggered by loureirin B.
Yi-Ning YANG ; Jue-Xu CHEN ; Xue-Yan PANG ; Susumu TERAKAWA ; Xu CHEN ; Yong-Hua JI ; Ke-Lan YONG
Acta Physiologica Sinica 2009;61(2):115-120
In the present study, the intracellular free calcium concentration ([Ca(2+)](i)) in acutely isolated rat dorsal root ganglia (DRG) neurons modulated by loureirin B, an active component of "dragon's blood" which is a kind of Chinese herbal medicine, was determined by the means of Fura-2 based microfluorimetry. It was found that loureirin B could evoke the elevation of [Ca(2+)](i) in a dose-dependent manner. However, the elevation of [Ca(2+)](i) evoked in the calcium free solution was much smaller than that in the standard external cell solution, suggesting that most change of [Ca(2+)](i) was generated by the influx of extracellular Ca(2+), not by the activities of intracellular organelles like Ca(2+) stores and mitochondria. In addition, the mixture of loureirin B and caffeine also induced [Ca(2+)](i) rise, but the peak of [Ca(2+)](i) rise induced by the mixture was significantly lower than that by caffeine alone, which means the triggering pathway and the targets of caffeine are probably involved in loureirin B-induced [Ca(2+)](i) rise. Moreover, compared to the transients induced by caffeine, KCl and capsaicin, the loureirin B-induced [Ca(2+)](i) rise is much slower and more stable. These results indicate that the capability of loureirin B of inducing the [Ca(2+)](i) rise is solid and unique.
Animals
;
Caffeine
;
pharmacology
;
Calcium
;
metabolism
;
Ganglia, Spinal
;
drug effects
;
metabolism
;
Neurons, Afferent
;
drug effects
;
metabolism
;
Rats
;
Resins, Plant
;
pharmacology