1.Cordycepin from Medicinal Fungi Cordyceps militaris Mitigates Inflammaging-Associated Testicular Damage via Regulating NF-jB/MAPKs Signaling in Naturally Aged Rats
Spandana Rajendra KOPALLI ; Kyu-Min CHA ; Jae Youl CHO ; Si-Kwan KIM ; Sushruta KOPPULA D
Mycobiology 2022;50(1):86-95
Inflammaging in male reproductive organs covers a wide variety of problems, including sexual dysfunction and infertility. In this study, the beneficial effects of cordycepin (COR), isolated from potential medicinal fungi Cordyceps militaris, in aging-associated testicular inflammation and serum biochemical changes in naturally aged rats were investigated. Male Sprague Dawley rats were divided into young control (YC), aged control (AC), and COR (5, 10, and 20 mg/kg) treated aged rat groups. Aging-associated serum biochemical changes and inflammatory parameters were analyzed by biochemical assay kits, Western blotting, and real-time RT-PCR. Results showed a significant (p < 0.05) alteration in the total blood cell count, lipid metabolism, and liver functional parameters in AC group when compared with YC group. However, COR-treated aged rats ameliorated the altered biochemical parameters significantly (p < 0.05 and p < 0.01 at 5, 10, and 20 mg/kg, respectively). Furthermore, the increase in the expression of inflammatory mediators (COX-2, interleukin (IL)-6, IL-1b, and tissue necrosis factor-alpha) in aged rat testis was significant (p < 0.05) when compared with YC group. Treatment with COR at 20 mg/kg to aged rats attenuated the increased expression of inflammatory mediators significantly (p < 0.05). Mechanistic studies revealed that the potential attenuating effects exhibited by COR in aged rats was mediated by regulation of NF-jB activation and MAPKs (c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/ 2, and p38) signaling. In conclusion, COR restored the altered serum biochemical parameters in aged rats and ameliorated the aging-associated testicular inflammation proving the therapeutic benefits of COR targeting inflammaging-associated male sexual dysfunctions.
2.Anti-fibrotic effects of Orostachys japonicus A. Berger (Crassulaceae) on hepatic stellate cells and thioacetamide-induced fibrosis in rats.
Sushruta KOPPULA ; Mun Jeong YUM ; Jin Seoub KIM ; Gwang Mo SHIN ; Yun Jin CHAE ; Tony YOON ; Chi Su CHUN ; Jae Dong LEE ; MinDong SONG
Nutrition Research and Practice 2017;11(6):470-478
BACKGROUND/OBJECTIVE: Orostachys japonicus A. Berger (Crassulaceae) has been used in traditional herbal medicines in Korea and other Asian countries to treat various diseases, including liver disorders. In the present study, the anti-fibrotic effects of O. japonicus extract (OJE) in cellular and experimental hepatofibrotic rat models were investigated. MATERIALS/METHODS: An in vitro hepatic stellate cells (HSCs) system was used to estimate cell viability, cell cycle and apoptosis by MTT assay, flow cytometry, and Annexin V-FITC/PI staining techniques, respectively. In addition, thioacetamide (TAA)-induced liver fibrosis was established in Sprague Dawley rats. Briefly, animals were divided into five groups (n = 8): Control, TAA, OJE 10 (TAA with OJE 10 mg/kg), OJE 100 (TAA with OJE 100 mg/kg) and silymarin (TAA with Silymarin 50 mg/kg). Fibrosis was induced by treatment with TAA (200 mg/kg, i.p.) twice per week for 13 weeks, while OJE and silymarin were administered orally two times per week from week 7 to 13. The fibrotic related gene expression serum biomarkers glutathione and hydroxyproline were estimated by RT-PCR and spectrophotometry, respectively, using commercial kits. RESULTS: OJE (0.5 and 0.1 mg/mL) and silymarin (0.05 mg/mL) treatment significantly (P < 0.01 and P < 0.001) induced apoptosis (16.95% and 27.48% for OJE and 25.87% for silymarin, respectively) in HSC-T6 cells when compared with the control group (9.09%). Further, rat primary HSCs showed changes in morphology in response to OJE 0.1 mg/mL treatment. In in vivo studies, OJE (10 and 100 mg/kg) treatment significantly ameliorated TAA-induced alterations in levels of serum biomarkers, fibrotic related gene expression, glutathione, and hydroxyproline (P < 0.05-P < 0.001) and rescued the histopathological changes. CONCLUSIONS: OJE can be developed as a potential agent for the treatment of hepatofibrosis.
Animals
;
Apoptosis
;
Asian Continental Ancestry Group
;
Biomarkers
;
Cell Cycle
;
Cell Survival
;
Fibrosis*
;
Flow Cytometry
;
Gene Expression
;
Glutathione
;
Hepatic Stellate Cells*
;
Humans
;
Hydroxyproline
;
In Vitro Techniques
;
Korea
;
Liver
;
Liver Cirrhosis
;
Models, Animal
;
Rats*
;
Rats, Sprague-Dawley
;
Silymarin
;
Spectrophotometry
;
Thioacetamide
3.Foeniculum vulgare Mill. inhibits lipopolysaccharide-induced microglia activation and ameliorates neuroinflammation-mediated behavioral deficits in mice
Sushruta Koppula ; Ramesh Alluri ; Spandana Rajendra Kopalli
Asian Pacific Journal of Tropical Biomedicine 2024;14(1):28-39
Objective: To investigate the effect of Foeniculum vulgare extract against lipopolysaccharide (LPS)-induced microglial activation in vitro as well as cognitive behavioral deficits in mice. Methods: LPS-activated BV-2 cell viability was measured using MTT assay and reactive oxygen species (ROS) was studied using DCF-DA assay. The antioxidative enzymes and pro-inflammatory mediators were analyzed using respective ELISA kits and Western blotting. For in vivo testing, LPS (1 mg/kg, i.p. ) was given daily for five days in male Swiss albino mice to produce chronic neuroinflammation. Cognitive and behavioral tests were performed using open-field, passive avoidance, and rotarod experiments in LPS-induced mice. Results: Foeniculum vulgare extract (25, 50 and 100 μg/mL) significantly attenuated the LPS-activated increase in nitric oxide (NO), ROS, cyclooxygenase-2, inducible NO synthase, IL-6, and TNF-alpha (P < 0.05). Moreover, LPS-induced oxidative stress and reduced antioxidative enzyme levels were significantly improved by Foeniculum vulgare extract (P < 0.05). The extract also regulated the NF-κB/MAPK signaling in BV-2 cells. In an in vivo study, Foeniculum vulgare extract (50, 100, and 200 mg/kg) markedly mitigated the LPS-induced cognitive and locomotor impairments in mice. The fingerprinting analysis showed distinctive peaks with rutin, kaempferol-3-O-glucoside, and anethole as identifiable compounds. Conclusions: Foeniculum vulgare extract can ameliorate LPS-stimulated neuroinflammatory responses in BV-2 microglial cells and improve cognitive and locomotor performance in LPS-administered mice.
4. Chrysanthemum indicum ethanol extract attenuates hepatic stellate cell activation in vitro and thioacetamide-induced hepatofibrosis in rats
Yun-Jin CHAE ; Mindong SONG ; Sushruta KOPPULA ; Mindong SONG ; Mindong SONG ; Yun-Jin CHAE ; Myong-Ki KIM ; Tony YOON
Asian Pacific Journal of Tropical Biomedicine 2021;11(11):500-509
Objective: To investigate the antifibrotic effects of Chrysanthemum indicum ethanol extract (CIEE) against activated hepatic stellate cells (HSC) and thioacetamide (TAA)-induced hepatofibrosis in rats. Methods: Cell viability and proliferation of HSC-T6 cells were measured using MTT assay. Primary HSCs were used to study morphology. TAA (200 mg/kg) was used to induced hepatic fibrosis in rats. CIEE (100 and 500 mg/kg) and silymarin (50 mg/kg) were administered orally. Liver functions including alanine transaminase, aspartate transaminase, glutathione, and hydroxyproline levels were measured using commercial kits. Liver sections and fibrotic biomarker expression were measured using hematoxylin and eosin staining and real-Time polymerase chain reaction. Results: In vitro study revealed that CIEE (0.1, 0.25, and 0.5 mg/mL) inhibited the proliferation of activated HSCs exposed to transforming growth factor (TGF)-β and restored the activated primary HSC morphology. In in vivo studies, TAA-induced increase in liver/body weight ratio (5.46 ± 0.26) was significantly reduced (4.13 ± 0.22) by CIEE (P<0.05 at 500 mg/kg). CIEE (100 and 500 mg/kg) improved the liver functions by significantly attenuating changes in alanine transaminase, aspartate transaminase, glutathione, and hydroxyproline levels (P<0.05). Further, CIEE (100 and 500 mg/kg) ameliorated the histological changes in liver tissue and TGF-β expression significantly (P<0.05) in TAA-induced rats. Conclusions: CIEE significantly protects against TAA-induced liver damage in rats and can be used in the treatment of liver fibrosis.