1.Embracing minimally invasive approaches to colorectal cancer resection.
Nan Zun TEO ; James Weiquan LI ; James Chi Yung NGU ; Tiing Leong ANG
Singapore medical journal 2025;66(Suppl 1):S38-S46
The clinical burden of colorectal cancer (CRC) is high. Population-based screening and early detection are essential to improve the long-term clinical outcome. Nonetheless, a significant proportion of patients still present at an advanced stage, including with acute large bowel obstruction. Image-enhanced endoscopy and artificial intelligence can improve the detection and diagnosis of colonic adenomas and early cancer. Endoscopic resection is regarded as the preferred curative treatment option for colonic adenoma and T0 and T1 CRC limited to the superficial submucosa. Emergency colonic stenting as bridge to interval curative surgery is increasingly accepted as a first-line option when technically feasible. Minimally invasive resection techniques such as laparoscopic colectomy and robot-assisted colorectal surgery have also come of age. These techniques reduce post-treatment morbidity, shorten the recovery process and can be cost-effective while maintaining long-term oncological cure. These outcome measures are relevant to our patients; therefore, minimally invasive approaches to curative resection should be embraced.
Humans
;
Colorectal Neoplasms/surgery*
;
Minimally Invasive Surgical Procedures/methods*
;
Laparoscopy/methods*
;
Colectomy/methods*
;
Robotic Surgical Procedures/methods*
;
Treatment Outcome
;
Colonoscopy/methods*
2.Influence of network latency and bandwidth on robot-assisted laparoscopic telesurgery: A pre-clinical experiment.
Ye WANG ; Qing AI ; Taoping SHI ; Yu GAO ; Bin JIANG ; Wuyi ZHAO ; Chengjun JIANG ; Guojun LIU ; Lifeng ZHANG ; Huaikang LI ; Fan GAO ; Xin MA ; Hongzhao LI ; Xu ZHANG
Chinese Medical Journal 2025;138(3):325-331
BACKGROUND:
Telesurgery has the potential to overcome spatial limitations for surgeons, which depends on surgical robot and the quality of network communication. However, the influence of network latency and bandwidth on telesurgery is not well understood.
METHODS:
A telesurgery system capable of dynamically adjusting image compression ratios in response to bandwidth changes was established between Beijing and Sanya (Hainan province), covering a distance of 3000 km. In total, 108 animal operations, including 12 surgical procedures, were performed. Total latency ranging from 170 ms to 320 ms and bandwidth from 15-20 Mbps to less than 1 Mbps were explored using designed surgical tasks and hemostasis models for renal vein and internal iliac artery rupture bleeding. Network latency, jitter, frame loss, and bit rate code were systemically measured during these operations. National Aeronautics and Space Administration Task Load Index (NASA-TLX) and a self-designed scale measured the workload and subjective perception of surgeons.
RESULTS:
All 108 animal telesurgeries, conducted from January 2023 to June 2023, were performed effectively over a total duration of 3866 min. The operations were completed with latency up to 320 ms and bandwidths as low as 1-5 Mbps. Hemostasis for vein and artery rupture bleeding models was effectively achieved under these low bandwidth conditions. The NASA-TLX results indicated that latency significantly impacted surgical performance more than bandwidth and image clarity reductions.
CONCLUSIONS
This telesurgery system demonstrated safety and reliability. A total of 320 ms latency is acceptable for telesurgery operations. Reducing image clarity can effectively mitigate the potential latency increase caused by decreased bandwidth, offering a new method to reduce the impact of latency on telesurgery.
Animals
;
Robotic Surgical Procedures/methods*
;
Laparoscopy/methods*
4.Expert consensus on laparoscopic and robotic-assisted pancreatoduodenectomy with resection and reconstruction of portal-superior mesenteric vein (2025).
Chinese Journal of Surgery 2025;63(6):461-470
Pancreatoduodenectomy with portal-superior mesenteric vein resection and reconstruction can provide radical surgical opportunities for patients with venous invasion and enable them to benefit from the surgery. With the development of minimally invasive concepts and surgical techniques, laparoscopic and robot-assisted pancreatoduodenectomy with portal-superior mesenteric vein resection and reconstruction is being increasingly widely carried out. This surgical procedure is highly technically demanding, and the perioperative management of patients is complex. However, there is a lack of high-quality and high-level evidence-based clinical studies in this regard. In order to better standardize the clinical application of laparoscopic or robot-assisted pancreatoduodenectomy with portal-superior mesenteric vein resection and reconstruction in China, the Study Group of Minimally Invasive Treatment for Pancreatic Cancer in China Anti-Cancer Association, guided by problems and based on evidence, formed 17 recommendations through full discussions among experts. The recommendations involve the safety, oncological benefits, and perioperative patient management of the minimally invasive approach to pancreatoduodenectomy with portal-superior mesenteric vein resection and reconstruction.
Humans
;
Pancreaticoduodenectomy/methods*
;
Mesenteric Veins/surgery*
;
Laparoscopy
;
Portal Vein/surgery*
;
Robotic Surgical Procedures
;
Pancreatic Neoplasms/surgery*
;
Consensus
5.Technical guidelines for minimally invasive surgery in liver transplant recipients(2025).
Chinese Journal of Surgery 2025;63(10):859-865
Liver transplantation is an effective treatment for end-stage liver disease. Liver transplantation is technically complex and associated with significant trauma. In recent years,minimally invasive surgical techniques,such as laparoscopy and robotic surgery,have rapidly developed and been widely applied across various surgical fields. Minimally invasive surgery offers advantages including reduced trauma,less bleeding,and faster postoperative recovery,and has become a mainstream trend in surgical development. In the field of liver transplantation,laparoscopic and robotic donor hepatectomy techniques for living donor liver transplantation have made significant progress. However, due to difficulties in exposing the anastomotic sites of the donor liver and challenges in vascular anastomosis,the application of minimally invasive techniques in donor liver implantation has progressed relatively slowly. With advancements in laparoscopic and robotic surgical techniques and related instruments,laparoscopic donor liver implantation has gradually become feasible. Currently,multiple liver transplant centers worldwide have begun to progressively perform laparoscopic or robot-assisted liver transplantation in recipients,demonstrating potential advantages in reducing surgical trauma and accelerating postoperative recovery. However,there is currently a lack of guidelines or consensus on the application of minimally invasive surgery in liver transplant recipients. Therefore,Branch of Organ Transplantation of Chinese Medical Association,Surgery Group of Chinese Society of Surgery of Chinese Medical Association,and Branch of Organ Transplant Physicians of Chinese Medical Doctor Association invited experts in the field to discuss clinical issues. Combining published guidelines,consensus statements,and research advancements,they formulated the "Technical guidelines for minimally invasive surgery in liver transplant recipients(2025)", aiming to provide reasonable guidance and references for clinical practitioners in the field of liver transplantation.
Humans
;
Liver Transplantation/methods*
;
Minimally Invasive Surgical Procedures/methods*
;
Laparoscopy
;
Robotic Surgical Procedures
;
Practice Guidelines as Topic
6.Clinical application standard of dynamic navigation technology in implant surgery.
Chinese Journal of Stomatology 2025;60(2):105-108
Dynamic navigation technology can "real-time guide" the implantologist to place the implant in the alveolar bone of the missing tooth area according to the preoperative design of the optimal site and path, making the whole implant surgery process more safe and precise. In order to further promote the standardized application of oral implant dynamic navigation technology, China Association of Gerontology and Geriatrics has convened distinguished experts to engage in deliberations and develop the standard. This standard covers the basic requirements, indications and contraindications, operation procedures, common complications and treatment measures, and accuracy verification. This standard can be used as a reference for the use of dynamic navigation technology in implant surgery.
Humans
;
Dental Implantation, Endosseous/standards*
;
Surgery, Computer-Assisted/standards*
;
Dental Implants
;
Surgical Navigation Systems/standards*
7.Early effectiveness of navigation-free robot-assisted total knee arthroplasty in treating knee osteoarthritis with extra-articular deformities.
Chen MENG ; Yongqing XU ; Rongmao SHI ; Luqiao PU ; Jian'an JI ; Xingyou YAO ; Xizong ZHOU ; Chuan LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(1):5-12
OBJECTIVE:
To evaluate the early effectiveness of navigation-free robot-assisted total knee arthroplasty (TKA) compared to traditional TKA in the treatment of knee osteoarthritis combined with extra-articular deformities.
METHODS:
The clinical data of 30 patients with knee osteoarthritis combined with extra-articular deformities who met the selection criteria between June 2019 and January 2024 were retrospectively analyzed. Fifteen patients underwent CORI navigation-free robot-assisted TKA and intra-articular osteotomy (robot group) and 15 patients underwent traditional TKA and intra-articular osteotomy (traditional group). There was no significant difference in age, gender, body mass index, affected knee side, extra-articular deformity angle, deformity position, deformity type, and preoperative knee range of motion, American Knee Society (KSS) knee score and KSS function score, and lower limb alignment deviation between the two groups ( P>0.05). The operation time, intraoperative blood loss, and complications of the two groups were recorded and compared. The knee range of motion and lower limb alignment deviation were recorded before operation and at 6 months after operation, and the knee joint function was evaluated by KSS knee score and function score.
RESULTS:
There was no significant difference in operation time between the two groups ( P>0.05); the intraoperative blood loss in the robot group was significantly less than that in the traditional group ( P<0.05). Patients in both groups were followed up 6-12 months, with an average of 8.7 months. The incisions of all patients healed well, and there was no postoperative complication such as thrombosis or infection. At 6 months after operation, X-ray examination showed that the position of the prosthesis was good in both groups, and there was no loosening or dislocation of the prosthesis. The knee joint range of motion, the lower limb alignment deviation, and the KSS knee score and KSS function score significantly improved in both groups ( P<0.05) compared to preoperative ones. The changes of lower limb alignment deviation and KSS function score between pre- and post-operation in the robot group were significantly better than those in the traditional group ( P<0.05), while the changes of other indicators between pre- and post-operation in the two groups were not significant ( P>0.05).
CONCLUSION
Compared to traditional TKA, navigation-free robot-assisted TKA for knee osteoarthritis with extra-articular deformities results in less intraoperative blood loss, more precise reconstruction of lower limb alignment, and better early effectiveness. However, long-term effectiveness require further investigation.
Humans
;
Arthroplasty, Replacement, Knee/methods*
;
Osteoarthritis, Knee/surgery*
;
Robotic Surgical Procedures/methods*
;
Male
;
Female
;
Retrospective Studies
;
Range of Motion, Articular
;
Middle Aged
;
Aged
;
Treatment Outcome
;
Osteotomy/methods*
;
Knee Joint/physiopathology*
;
Operative Time
8.TiRobot-assisted minimally invasive treatment of coracoid process fractures of scapula.
Yonghong DAI ; Qingyu LI ; Yanhui ZENG ; Zhengjie WU ; Chunpeng ZHAO ; Junqiang WANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(1):40-46
OBJECTIVE:
To explore effectiveness of TiRobot-assisted screw implantation in the treatment of coracoid process fractures of the scapula.
METHODS:
A retrospective analysis was conducted on the clinical data from 24 patients with coracoid process fractures of the scapula admitted between September 2019 and January 2024 and met selection criteria. Among them, 12 patients underwent TiRobot-assisted screw implantation (robot group) and 12 underwent manual screw implantation (control group) during internal fixation. There was no significant difference ( P>0.05) in baseline data such as gender, age, body mass index, disease duration, cause of injury, coracoid process fracture classification, and proportion of patients with associated injuries between the two groups. The incision length, operation time, intraoperative blood loss, hospital stay, accuracy of screw placement, coracoid process fracture healing time, and complications were recorded and compared, as well as pain visual analogue scale (VAS) score, and Constant-Murley score at last follow-up.
RESULTS:
The intraoperative blood loss and incision length in the robot group were significantly lower than those in the control group ( P<0.05); however, there was no significant difference in operation time and hospital stay between the two groups ( P>0.05). All patients were followed up 8-27 months (mean, 17.5 months), and the difference in follow-up time between the two groups was not significant ( P>0.05). At last follow-up, the VAS score for shoulder pain in the robot group was signifncatly lower compared to the control group, and the Constant-Murley score was significantly higher ( P<0.05). In the robot group, 16 screws were implanted intraoperatively, while 13 screws were implanted in the control group. Radiographic re-evaluation showed that the excellent and good rate of screw implantation was higher in the robot group (93.8%, 15/16) than in the control group (61.5%, 8/13), but the difference in the precision of screw implantation between the two groups was not significant ( P>0.05). Four patients in the robot group and 1 in the control group achieved double screws fixation; however, the difference in achieving double screws fixation between the two groups was not significant ( P>0.05). All fractures healed in both groups with 1 case of malunion in the control group. There was no significant difference in healing time between the two groups ( P>0.05). During follow-up, 1 patient in the control group experienced screw loosening and displacement. There was no significant difference in the incidence of screw loosening and fracture malunion between the two groups ( P>0.05).
CONCLUSION
Compared with manual screw implantation, TiRobot-assisted minimally invasive treatment of coracoid process fractures of the scapula can reduce intraoperative blood loss, shorten incision length, alleviate pain, and obtain better promote shoulder joint functional recovery.
Humans
;
Male
;
Female
;
Retrospective Studies
;
Fracture Fixation, Internal/instrumentation*
;
Minimally Invasive Surgical Procedures/instrumentation*
;
Adult
;
Middle Aged
;
Fractures, Bone/surgery*
;
Bone Screws
;
Coracoid Process/surgery*
;
Robotic Surgical Procedures/methods*
;
Scapula/surgery*
;
Treatment Outcome
;
Operative Time
;
Young Adult
;
Length of Stay
;
Blood Loss, Surgical
9.An experimental study on distal locking of femoral intramedullary nail assisted by an intelligent orthopedic robot.
Kun WANG ; Cui XU ; Zhonghe WANG ; Junsong WANG ; Shaobo NIE ; Yanpeng ZHAO ; Wei ZHANG ; Ming HAO
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):129-133
OBJECTIVE:
To explore the advantages and effectiveness of the independently developed intelligent orthopedic robot-assisted distal locking of femoral intramedullary nails.
METHODS:
Thirty-two adult cadaveric femur specimens were randomly divided into two groups, with 16 specimens in each group. The experimental group used the intelligent orthopedic robot to assist in the distal locking of femoral intramedullary nail holes, while the control group used the traditional method of manual locking under X-ray fluoroscopy. The locking time, fluoroscopy times, and the success rate of first locking were recorded and compared between the two groups.
RESULTS:
The locking time of the experimental group was (273.94±38.67) seconds, which was shorter than that of the control group [(378.38±152.72) seconds], and number of fluoroscopies was (4.56±0.81) times, which was less than that of the control group [(8.00±3.98) times]. The differences were significant [ MD=73.054 (-37.187, 85.813), P=0.049; MD=1.969 (-1.437, 2.563), P=0.002]. The first locking success rate of the experimental group was 100% (16/16), which was significantly higher than that of the control group (68.75%, 11/16) ( P=0.043).
CONCLUSION
The efficiency of distal locking of femoral intramedullary nails assisted by the intelligent orthopedic robot is significantly higher than that of the traditional manual locking method under fluoroscopy, as it can markedly reduce the time required for distal locking of femoral intramedullary nails, decrease intraoperative radiation exposure, and increase the success rate of locking.
Humans
;
Fracture Fixation, Intramedullary/instrumentation*
;
Bone Nails
;
Fluoroscopy
;
Femur/diagnostic imaging*
;
Femoral Fractures/surgery*
;
Robotic Surgical Procedures/instrumentation*
;
Cadaver
;
Adult
;
Robotics
;
Male
10.Effectiveness of digital three-dimensional printing osteotomy guide plate assisted total knee arthroplasty in treatment of knee osteoarthritis patients with femoral internal implant.
Chao LI ; Binbin ZHANG ; Xiangping LIU ; Haiya LI ; Jingtang ZHANG ; Min WU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):151-157
OBJECTIVE:
To investigate the effectiveness of digital three-dimensional (3D) printing osteotomy guide plate assisted total knee arthroplasty (TKA) in treatment of knee osteoarthritis (KOA) patients with femoral internal implants.
METHODS:
The clinical data of 55 KOA patients who met the selection criteria between July 2021 and October 2023 were retrospectively analyzed. Among them, 26 cases combined with femoral implants were treated with digital 3D printing osteotomy guide plate assisted TKA (guide plate group), and 29 cases were treated with conventional TKA (control group). There was no significant difference in gender, age, body mass index, side, Kellgren-Lawrence classification, preoperative visual analogue scale (VAS) score, Hospital for Special Surgery (HSS) knee score, knee range of motion, and other baseline data between the two groups ( P>0.05). The operation time, intraoperative blood loss, incision length, postoperative first ambulation time, surgical complications; VAS score, knee HSS score, knee range of motion before operation, at 1 week and 3 months after operation, and at last follow-up; distal femoral lateral angle, proximal tibial medial angle, hip-knee-ankle angle and other imaging indicators at last follow-up were recorded and compared between the two groups.
RESULTS:
The operation time, incision length, intraoperative blood loss, and postoperative first ambulation time in the guide plate group were significantly lower than those in the control group ( P<0.05). In the control group, there were 1 case of incision rupture and bleeding and 1 case of lower limb intermuscular venous thrombosis, which was cured after symptomatic treatment. There was no complication such as neurovascular injury, incision infection, or knee prosthesis loosening in both groups. Patients in both groups were followed up 12-26 months, with an average of 16.25 months. The VAS score, HSS score, and knee range of motion improved at each time point after operation in both groups, and further improved with time after operation, the differences were significant ( P<0.05). The above indicators in the guide plate group were significantly better than those in the control group at 1 week and 3 months after operation ( P<0.05), and there was no significant difference between the two groups at last follow-up ( P>0.05). At last follow-up, the distal femoral lateral angle, the proximal tibial medial angle, and the hip-knee-ankle angle in the guide plate group were significantly better than those in the control group ( P<0.05).
CONCLUSION
The application of digital 3D printing osteotomy guide plate assisted TKA in the treatment of KOA patients with femoral implants can simplify the surgical procedures, overcome limitations of conventional osteotomy guides, reduce surgical trauma, achieve individualized and precise osteotomy, and effectively restore lower limb alignment and knee joint function.
Humans
;
Arthroplasty, Replacement, Knee/instrumentation*
;
Osteoarthritis, Knee/surgery*
;
Osteotomy/instrumentation*
;
Male
;
Retrospective Studies
;
Female
;
Printing, Three-Dimensional
;
Femur/surgery*
;
Middle Aged
;
Bone Plates
;
Range of Motion, Articular
;
Aged
;
Treatment Outcome
;
Surgery, Computer-Assisted/methods*
;
Knee Prosthesis
;
Knee Joint/surgery*
;
Operative Time

Result Analysis
Print
Save
E-mail