1.Electrical stimulation based on triboelectric nanogenerator promotes osteogenesis of MC3T3-E1 cells on titanium surfaces.
Bo PANG ; Shu YANG ; Hongyang HAN ; Xingwei ZHANG ; Tao SONG
Journal of Biomedical Engineering 2025;42(2):366-373
This paper aims to explore the effect of electrical stimulation of triboelectric nanogenerators (TENGs) on the osteogenic and other biological behaviors of mouse embryonic osteoblast precursor cells (MC3T3-E1 cells) on titanium surfaces. First, an origami-type TENG was fabricated, and its electrical output performance was tested. The optimal current of the generator and the feasibility of the experiment were verified by the CCK-8 assay and scratch assay. At the optimal current, the osteogenic conditions of the cells in each group were determined by quantitative analysis of the total protein content, alkaline phosphatase (ALP) activity, and alizarin red staining (ARS) on the titanium surface. Finally, the adhesion and spreading of cells on the titanium surface after electrical stimulation were observed. The results showed that the TENG had good electrical output performance, with an open-circuit voltage of 65 V and a short-circuit current of 42 μA. Compared with the rest of the current, a current strength of 30 μA significantly improved cell proliferation and migration, osteogenesis, and adhesion and spreading capabilities. The above results confirm the safety and operability of TENG in biomedical applications, laying the foundation for future TENG applications in reducing the time of bone integration around titanium implants after surgery.
Titanium/chemistry*
;
Osteogenesis
;
Animals
;
Mice
;
Osteoblasts/cytology*
;
Electric Stimulation/instrumentation*
;
Cell Adhesion
;
Cell Proliferation
;
Surface Properties
;
Cell Differentiation
;
Nanotechnology
2.Research progress on enhancing osseointegration properties of polyetheretherketone implants through various modification methods.
Shilai LIU ; Xiaoke FENG ; Chunxia CHEN
Journal of Biomedical Engineering 2025;42(2):417-422
This review article summarizes the current modification methods employed to enhance the osseointegration properties of polyetheretherketone (PEEK), a novel biomaterial. Our analysis highlights that strategies such as surface treatment, surface modification, and the incorporation of bioactive composites can markedly improve the bioactivity of PEEK surfaces, thus facilitating their effective integration with bone tissue. However, to ensure widespread application of PEEK in the medical field, particularly in oral implantology, additional experiments and long-term clinical evaluations are required. Looking ahead, future research should concentrate on developing innovative modification techniques and assessment methodologies to further optimize the performance of PEEK implant materials. The ultimate goal is to provide the clinical setting with even more reliable solutions.
Benzophenones
;
Ketones/chemistry*
;
Polyethylene Glycols/chemistry*
;
Osseointegration
;
Humans
;
Polymers
;
Biocompatible Materials/chemistry*
;
Surface Properties
;
Prostheses and Implants
;
Dental Implants
3.Influence of two methods of smear layer removal on the surface properties of dentin.
Lingli ZHU ; Lin TANG ; Bowen LI ; Mei WANG ; Yuhua LIU
Journal of Peking University(Health Sciences) 2025;57(2):340-346
OBJECTIVE:
To explore the effects of two methods of smear layer removal on the surface properties of dentin.
METHODS:
Sixty extracted sound third molars were collected in this study, and were prepared as uniform dentin specimens with smear layer. All specimens were randomly divided into three groups: Control group, ultrasonic treatment (UT) group and etched treatment (ET) group. Scanning electron microscope (SEM) were used to observe the surface micromorphology of all three groups. Then, the surface elements, mineral phases and functional groups were analyzed by energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and flourier transformed infrared spectrometer (FTIR) respectively. The mechanical properties, hydrophilicity and biocompatibility were also further evaluated.
RESULTS:
It was revealed that dentin tubules of UT and ET groups were exposed, but lots of dentin debris piled up on the surface of the control one which covered up dentin tubules on the surface. The EDX results should that the weaker peak value of calcium and phosphorus in ET group than control and UT groups. Characteristic peaks of hydroxyapatite could be seen by XRD in all of the three groups, but lower distinctive peaks of amide Ⅰ, Ⅱ and Ⅲ bands of collagen of the dentin surface in control group than in ET and UT groups. The microhardness results showed that ET group was lower than control and UT groups, the difference was significant (P < 0.05). Better hydrophilicity of ET group was investigated (P < 0.05) than control group and UT group. Cells could be observed to adhere normally to dentin surface of each group which meant that all of the three groups had good biocompatibility.
CONCLUSION
Both UT and ET could effectively remove the smear layer on the surface of dentin and had no adverse effect of the dentin micromorphology and biocompatibility. The ultrasonic removal of the smear layer did not influence the mineral structure, hydrophilicity and mechanical properties of dentin surface. Although ET can effectively improve the hydrophilicity of dentin but decreased mechanical properties and the content of calcium and phosphorus.
Dentin/ultrastructure*
;
Humans
;
Surface Properties
;
Smear Layer
;
Molar, Third
;
Microscopy, Electron, Scanning
;
Dental Etching/methods*
4.Advances in Surface Modification Techniques of Ureteral Stents.
Guanjun MA ; Hua XIE ; Chao ZHOU ; Guangtai ZHOU ; Haijun ZHANG
Chinese Journal of Medical Instrumentation 2025;49(4):406-414
The article introduces the formation process of bacterial infection and encrustation on the surface of ureteral stents, elaborates in detail on six surface modification methods for ureteral stents, namely impregnation, spraying, vapor deposition, chemical grafting, self-assembly, and electrospinning, then analyzes the advantages and limitations of each technique during application. Meanwhile, it introduces three commonly used materials for ureteral stents, namely polymers, metals, and biodegradable materials, and further explains the commonly used surface modification methods corresponding to different materials. Looking ahead, with the continuous strengthening of the multi-technology integration trend and the continuous advancement of new material research and development, it is expected that a more ideal ureteral stent can be developed.
Stents
;
Ureter
;
Surface Properties
;
Humans
5.Effects of cell area on single odontoblast polarization and differentiation via microarray technology.
Huen LI ; Nianzuo YU ; Xiheng LI ; Xiaoduo TANG ; Yalu SUN ; Chao SI ; Junhu ZHANG ; Bei CHANG
West China Journal of Stomatology 2025;43(2):183-189
OBJECTIVES:
This study aimed to explore the impact of cell spreading area on odontoblast polarization and differentiation using micropatterned surfaces ge-nerated by photolithography.
METHODS:
Micropatterned surfaces with differential adhesive properties were prepared using polyethylene glycol diacrylate (PEGDA)-ba-sed photolithography. Human dental pulp stem cells (hD-PSCs) were isolated into single cells and cultured on micropatterned surfaces with areas of 1 800, 2 700, and 3 600 μm2. Immunofluorescence staining was used to observe cell morphology and analyze the relocating of the golgi apparatus and nucleus. Alkaline phosphatase staining was preformed to examine odontogenic differentiation.
RESULTS:
The hDPSCs were successfully isolated and cultured on micropatterned surfaces mimicking the morphology of polarized odontoblasts. Phalloidin staining confirmed that the isolated hDPSCs successfully recapitulated the morphology of predesigned micropatterns. Immunofluorescence staining showed that the polarization and differentiation levels of the hDPSCs with a 3600 μm2 area were significantly higher than those with 1 800 and 2 700 μm2 areas (P<0.05).
CONCLUSIONS
The polarization and differentiation of single hDPSCs increased with the cell areas on micropatterned surfaces.
Cell Differentiation
;
Humans
;
Dental Pulp/cytology*
;
Odontoblasts/cytology*
;
Stem Cells/cytology*
;
Cells, Cultured
;
Cell Polarity
;
Surface Properties
6.In vitro osteogenic performance study of graphene oxide-coated titanium surfaces modified with dopamine or silane.
Qinglin WU ; Yingzhen LAI ; Yanling HUANG ; Zeyu XIE ; Yanyin LIN
West China Journal of Stomatology 2025;43(3):336-345
OBJECTIVES:
This study aimed to compare the osteogenic performance differences of titanium surface coatings modified by dopamine or silanized graphene oxide, and to provide a more suitable modification scheme for titanium surface graphene oxide coatings.
METHODS:
Titanium was subjected to alkali-heat treatment and then modified with dopamine and silanization, respectively, followed by coating with graphene oxide. Control and experimental groups were designed as follows: pure titanium (Ti) group; titanium after alkali-heat treatment (Ti-NaOH) group; titanium after alkali-heat treatment and silanization modification (Ti-APTES) group; titanium after alkali-heat treatment and dopamine modification (Ti-DOPA) group; titanium with silanization-modified surface decorated with graphene oxide (Ti-APTES/GO) group; titanium with dopamine-modified surface decorated with graphene oxide (Ti-DOPA/GO) group. The physical and chemical properties of the material surfaces were analyzed using scanning electron microscopy (SEM), contact angle goniometer, X-ray photoelectron spectroscopy (XPS), and Raman spectrometer. The proliferation and adhesion morphology of mouse embryonic osteoblast precursor cells MC3T3-E1 on the material surfaces were observed by cell viability detection and immunofluorescence staining followed by laser confocal microscopy. The effects on the osteogenic differentiation of MC3T3-E1 cells were studied by alkaline phosphatase (ALP) staining, alizarin red staining and quantification, and real-time quantitative polymerase chain reaction.
RESULTS:
After modification with graphene oxide coating, a thin-film-like structure was observed on the surface under SEM. The hydrophilicity of all experimental groups was improved, among which the Ti-DOPA/GO group had the best hydrophilicity. XPS and Raman spectroscopy analysis showed that the modified materials exhibited typical D and G peaks, and XPS revealed the presence of a large number of oxygen-containing functional groups on the surface. CCK8 assay showed that all groups of materials had no cytotoxicity, and the proliferation level of the Ti-APTES/GO group was higher than that of the Ti-DOPA/GO group. Under the laser confocal microscope, the cells in the Ti-DOPA/GO and Ti-APTES/GO groups spread more fully. The Ti-DOPA/GO and Ti-APTES/GO groups had the deepest ALP staining, and the Ti-APTES/GO group had the most alizarin red-stained mineralized nodules and the highest quantitative result of alizarin red staining. In the Ti-DOPA/GO and Ti-APTES/GO groups, the expression of the early osteogenic-related gene RUNX2 reached a relatively high level, while in the expression of the late osteogenic-related genes OPN and OCN, the Ti-APTES/GO group performed better than the Ti-DOPA/GO group.
CONCLUSIONS
Ti-APTES/GO significantly outperformed Ti-DOPA/GO in promoting the adhesion, proliferation, and in vitro osteogenic differentiation of MC3T3-E1 cells.
Titanium/chemistry*
;
Graphite/chemistry*
;
Dopamine/chemistry*
;
Animals
;
Mice
;
Osteogenesis
;
Osteoblasts/cytology*
;
Surface Properties
;
Cell Proliferation
;
Silanes/chemistry*
;
Cell Adhesion
;
Coated Materials, Biocompatible/chemistry*
;
Cell Differentiation
;
Alkaline Phosphatase/metabolism*
;
Microscopy, Electron, Scanning
7.Progress in Application of Heparin Coating in Blood Contact Medical Devices.
Chinese Journal of Medical Instrumentation 2023;47(3):288-293
Blood compatibility is the main restriction of blood-contacting medical devices in clinical application, especially long-term blood-contacting medical devices will stimulate the immune defense mechanism of the host, resulting in thrombosis. Heparin anticoagulant coating links heparin molecules to the surface of medical device product materials, improves the compatibility between the material surface interface and the body, and reduces the host immune defense reactions. This study reviews the structure and biological properties of heparin, the market application status of heparin-coated medical products, the insufficiency and improvement of heparin coating, which can provide a reference for the application research of blood contact medical devices.
Humans
;
Heparin/chemistry*
;
Anticoagulants/chemistry*
;
Thrombosis
;
Coated Materials, Biocompatible/chemistry*
;
Surface Properties
8.Micromechanical interlocking structure at the filler/resin interface for dental composites: a review.
Shuning ZHANG ; Xiao WANG ; Jiawei YANG ; Hongyan CHEN ; Xinquan JIANG
International Journal of Oral Science 2023;15(1):21-21
Dental resin composites (DRCs) are popular materials for repairing caries or dental defect, requiring excellent properties to cope with the complex oral environment. Filler/resin interface interaction has a significant impact on the physicochemical/biological properties and service life of DRCs. Various chemical and physical modification methods on filler/resin interface have been introduced and studied, and the physical micromechanical interlocking caused by the modification of fillers morphology and structure is a promising method. This paper firstly introduces the composition and development of DRCs, then reviews the chemical and physical modification methods of the filler/resin interface, mainly discusses the interface micromechanical interlocking structures and their enhancement mechanism for DRCs, finally give a summary on the existing problems and development potential.
Composite Resins/chemistry*
;
Surface Properties
;
Materials Testing
9.Manufacturing classification system for oral solid dosage forms of traditional Chinese medicines(Ⅳ): classification of hygroscopicity behaviors of capsules.
Yu LIN ; Huan-Zheng LI ; Zi-Chen LIANG ; Fang-Fang XU ; Xin ZHANG ; Zhen-Zhong WANG ; Bing XU ; Wei XIAO
China Journal of Chinese Materia Medica 2023;48(15):3997-4006
Hard capsules of traditional Chinese medicine(TCM) have different degrees of hygroscopicity, which affects the stability and efficacy of drugs. In this paper, 30 kinds of commercially available TCM capsules were used as the research object. The hygroscopicity curves of capsule contents, capsule shells, and capsules were tested respectively, and the first-order kinetic equation was used for fitting. The results show that during the 24 h hygroscopicity process, the capsule shell can reduce the weight gain caused by the hygroscopicity of the contents by 0.80%-53.0% and the hygroscopicity rate of the capsule contents by 1.74%-91.3%, indicating that the capsule shell has a strong delay effect on the hygroscopicity of the contents of the TCM capsules. Seven physical parameters of the contents of 30 kinds of TCM capsules were determined, and 14 prescription process-related parameters were sorted out. A partial least squares model for predicting the hygroscopicity rate of the contents of TCM capsules(with shell) for 24 h was established. It is found that the hygroscopicity rate of the capsule shell is positively correlated with the hygroscopicity of the contents of TCM capsules(with shell), suggesting that the capsule shell with a low hygroscopicity rate is helpful for moisture prevention. In addition, the pre-treatment process route of the preparation and the type of molding raw materials affect the hygroscopicity. A larger proportion of the extract in the capsule content and a smaller proportion of the fine powder of the decoction pieces indicate stronger hygroscopicity of the capsule content. The 24 h hygroscopicity rate of 15% was used as the classification node of hygroscopicity strength, and the hygroscopicity rate constant of 0.58 was used as the classification node of hygroscopicity speed. The classification system of hygroscopicity behaviors of TCM capsules was established: the varieties with strong and fast hygroscopicity accounted for about 6.67%, while those with strong and slow hygroscopicity accounted for about 33.3%; the varieties with weak and fast hygroscopicity accounted for about 26.7%, while those with weak and slow hygroscopicity accounted for about 33.3%. The classification system is helpful to quantify and compare the hygroscopicity behavior of different TCM capsules and provides a reference for the quality improvement, moisture prevention technologies, and material research of TCM capsules.
Medicine, Chinese Traditional
;
Wettability
;
Capsules
;
Powders
;
Technology
;
Drugs, Chinese Herbal
10.Progress in antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants.
Peng LIU ; Bo FAN ; Lei ZOU ; Lijun LÜ ; Qiuming GAO
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(10):1300-1313
OBJECTIVE:
To review antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants, so as to provide reference for subsequent research.
METHODS:
The related research literature on antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants in recent years was reviewed, and the research progress was summarized based on different kinds of antibacterial substances and osteogenic active substances.
RESULTS:
At present, the antibacterial/osteogenesis dual-functional surface modification strategy of titanium-based implants includes: ① Combined coating strategy of antibiotics and osteogenic active substances. It is characterized in that antibiotics can be directly released around titanium-based implants, which can improve the bioavailability of drugs and reduce systemic toxicity. ② Combined coating strategy of antimicrobial peptides and osteogenic active substances. The antibacterial peptides have a wide antibacterial spectrum, and bacteria are not easy to produce drug resistance to them. ③ Combined coating strategy of inorganic antibacterial agent and osteogenic active substances. Metal ions or metal nanoparticles antibacterial agents have broad-spectrum antibacterial properties and various antibacterial mechanisms, but their high-dose application usually has cytotoxicity, so they are often combined with substances that osteogenic activity to reduce or eliminate cytotoxicity. In addition, inorganic coatings such as silicon nitride, calcium silicate, and graphene also have good antibacterial and osteogenic properties. ④ Combined coating strategy of metal organic frameworks/osteogenic active substances. The high specific surface area and porosity of metal organic frameworks can effectively package and transport antibacterial substances and bioactive molecules. ⑤ Combined coating strategy of organic substances/osteogenic active substancecs. Quaternary ammonium compounds, polyethylene glycol, N-haloamine, and other organic compounds have good antibacterial properties, and are often combined with hydroxyapatite and other substances that osteogenic activity.
CONCLUSION
The factors that affect the antibacterial and osteogenesis properties of titanium-based implants mainly include the structure and types of antibacterial substances, the structure and types of osteogenesis substances, and the coating process. At present, there is a lack of clinical verification of various strategies for antibacterial/osteogenesis dual-functional surface modification of titanium-based implants. The optimal combination, ratio, dose-effect mechanism, and corresponding coating preparation process of antibacterial substances and bone-active substances are needed to be constantly studied and improved.
Anti-Bacterial Agents/pharmacology*
;
Coated Materials, Biocompatible/chemistry*
;
Metal-Organic Frameworks/pharmacology*
;
Osteogenesis
;
Surface Properties
;
Titanium/pharmacology*
;
Prostheses and Implants

Result Analysis
Print
Save
E-mail