1.Identification of the mutation of SOD1 gene in a familial amyotrophic lateral sclerosis.
Shu-gui SHI ; Lu-si LI ; Kang-nin CHEN ; Xing LIU
Chinese Journal of Medical Genetics 2004;21(2):149-152
OBJECTIVETo identify the mutation of Cu/Zn superoxide dismutase(SOD1) gene in an amyotrophic lateral sclerosis (ALS) family with unique phenotype.
METHODSFive exons of SOD1 gene were amplified by PCR. The differences of these products were analyzed by PCR-single strand conformation polymorphism and visualized by silver staining.
RESULTSAbnormal bands were found in exons 2 and 5 of SOD1 gene in several familial members. DNA sequence analysis verified that a base pair insertion occurred in the codon area of exon 2 and in the intron area of exon 5. And the insertion mutation of exon 2 led to a frameshift mutation and premature stop. It is a new type of SOD1 mutation which may be associated with familial amyotrophic lateral sclerosis.
CONCLUSIONInsertion mutation of exon 2 may be responsible for the disease of an ALS family in Chongqing.
Adult ; Amyotrophic Lateral Sclerosis ; genetics ; Humans ; Mutation ; Polymorphism, Single-Stranded Conformational ; Superoxide Dismutase ; genetics ; Superoxide Dismutase-1
2.In vivo antioxidant activity of rabbiteye blueberry (Vaccinium ashei cv. 'Brightwell') anthocyanin extracts.
Jing WANG ; Xingyu ZHAO ; Jiawei ZHENG ; Daniela D HERRERA-BALANDRANO ; Xiaoxiao ZHANG ; Wuyang HUANG ; Zhongquan SUI
Journal of Zhejiang University. Science. B 2023;24(7):602-616
Blueberries are rich in phenolic compounds including anthocyanins which are closely related to biological health functions. The purpose of this study was to investigate the antioxidant activity of blueberry anthocyanins extracted from 'Brightwell' rabbiteye blueberries in mice. After one week of adaptation, C57BL/6J healthy male mice were divided into different groups that were administered with 100, 400, or 800 mg/kg blueberry anthocyanin extract (BAE), and sacrificed at different time points (0.1, 0.5, 1, 2, 4, 8, or 12 h). The plasma, eyeball, intestine, liver, and adipose tissues were collected to compare their antioxidant activity, including total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity and glutathione-peroxidase (GSH-PX/GPX) content, and the oxidative stress marker malondialdehyde (MDA) level. The results showed that blueberry anthocyanins had positive concentration-dependent antioxidant activity in vivo. The greater the concentration of BAE, the higher the T-AOC value, but the lower the MDA level. The enzyme activity of SOD, the content of GSH-PX, and messenger RNA (mRNA) levels of Cu,Zn-SOD, Mn-SOD, and GPX all confirmed that BAE played an antioxidant role after digestion in mice by improving their antioxidant defense. The in vivo antioxidant activity of BAE indicated that blueberry anthocyanins could be developed into functional foods or nutraceuticals with the aim of preventing or treating oxidative stress-related diseases.
Male
;
Mice
;
Animals
;
Antioxidants/pharmacology*
;
Blueberry Plants
;
Anthocyanins/pharmacology*
;
Mice, Inbred C57BL
;
Superoxide Dismutase
;
Plant Extracts/pharmacology*
;
Superoxide Dismutase-1
3.High yields and soluble expression of superoxide dismutases in Escherichia coli due to the HIV-1 Tat peptide via increases in mRNA transcription.
Yangdong SUN ; Qiao YE ; Min WU ; Yonghong WU ; Chenggang ZHANG ; Weiqun YAN
Experimental & Molecular Medicine 2016;48(10):e264-
This study aimed to validate the high yield and soluble expression of proteins carrying the transactivator of transcription (Tat) peptide tag, and further explored the potential mechanism by which the Tat tag increases expression. Escherichia coli superoxide dismutase (SOD) proteins, including SodA, SodB and SodC, were selected for analysis. As expected, the yields and the solubility of Tat-tagged proteins were higher than those of Tat-free proteins, and similar results were observed for the total SOD enzyme activity. Bacterial cells that overexpressed Tat-tagged proteins exhibited increased anti-paraquat activity compared with those expressing Tat-free proteins that manifested as SodA>SodC>SodB. When compared with an MG1655 wild-type strain, the growth of a ΔSodA mutant strain was found to be inhibited after paraquat treatment; the growth of ΔSodB and ΔSodC mutant strains was also slightly inhibited. The mRNA transcript level of genes encoding Tat-tagged proteins was higher than that of genes encoding Tat-free proteins. Furthermore, the α-helix and turn of Tat-tagged proteins were higher than those of Tat-free proteins, but the β-sheet and random coil content was lower. These results indicated that the incorporation of the Tat core peptide as a significant basic membrane transduction peptide in fusion proteins could increase mRNA transcripts and promote the high yield and soluble expression of heterologous proteins in E. coli.
Escherichia coli*
;
Escherichia*
;
HIV-1*
;
Membranes
;
Paraquat
;
RNA, Messenger*
;
Solubility
;
Superoxide Dismutase
;
Superoxides*
;
Trans-Activators
4.Identification of a novel SOD1 variant in a Chinese patient with amyotrophic lateral sclerosis.
Yuan BAI ; Yong'an ZHOU ; Jianwei LI ; Junmei GENG ; Xingxing LI ; Zhe LI ; Jianping CHENG ; Yaxin HAN ; Ruirui REN
Chinese Journal of Medical Genetics 2021;38(12):1224-1227
OBJECTIVE:
To explore the genetic basis for a Chinese patient with amyotrophic lateral sclerosis (ALS).
METHODS:
Peripheral blood samples were collected from the patient and his parents for the extraction of genomic DNA. Genetic variant was identified by whole exome sequencing. Candidate variant was verified by Sanger sequencing of his parents and healthy controls.
RESULTS:
The patient was found to harbor a heterozygous c.420C>G (p.Asn140Lys) variant of the SOD1 gene. The same variant was not detected in his parents and 100 healthy controls. The variant has not been included in HGMD, dbSNP and other databases.
CONCLUSION
The c.420C>G variant of the SOD1 gene may underlie the ALS in this patient. Above finding has enriched the spectrum of SOD1 gene variants.
Amyotrophic Lateral Sclerosis/genetics*
;
China
;
Heterozygote
;
Humans
;
Superoxide Dismutase-1/genetics*
;
Whole Exome Sequencing
5.Design of functional small interfering RNAs targeting amyotrophic lateral sclerosis-associated mutant alleles.
Chang-Ming GENG ; Hong-Liu DING
Chinese Medical Journal 2011;124(1):106-110
BACKGROUNDRNA interference (RNAi) is a potential cure for amyotrophic lateral sclerosis (ALS) caused by dominant, gain-of-function superoxide dismutase 1 (SOD1) mutations. The success of such therapy relies on the functional small interfering RNAs (siRNAs) that can effectively deliver RNAi. This study aimed to design the functional siRNAs targeting ALS-associated mutant alleles.
METHODSA modified dual luciferase system containing human SOD1 mRNA target was established to quantify siRNA efficacy. Coupled with validated siRNAs identified in the literature, we analyzed the rationale of siRNA design and subsequently developed an asymmetry rule-based strategy for designing siRNA. We then further tested the effectiveness of this design strategy in converting a naturally symmetric siRNA into functional siRNAs with favorable asymmetry for gene silencing of SOD1 alleles.
RESULTSThe efficacies of siRNAs could vary tremendously by one base-pair position change. Functional siRNAs could target the whole span of SOD1 mRNA coding sequence as well as non-coding region. While there is no distinguishable pattern of the distribution of nucleobases in these validated siRNAs, the high percent of GC count at the last two positions of siRNAs (P18 and P19) indicated a strong effect of asymmetry rule. Introducing a mismatch at position 1 of the 5' of antisense strand of siRNA successfully converted the inactive siRNA into functional siRNAs that silence SOD1 with desired efficacy.
CONCLUSIONSAsymmetry rule-based strategy that incorporates a mismatch into siRNA most consistently enhances RNAi efficacy and guarantees producing functional siRNAs that successfully silence ALS-associated SOD1 mutant alleles regardless target positions. This strategy could also be useful to design siRNAs for silencing other disease-associated dominant, gain-of-function mutant genes.
Amyotrophic Lateral Sclerosis ; genetics ; Cell Line ; Humans ; RNA Interference ; physiology ; RNA, Small Interfering ; genetics ; physiology ; Superoxide Dismutase ; genetics ; Superoxide Dismutase-1
6.REEP1 Preserves Motor Function in SOD1G93A Mice by Improving Mitochondrial Function via Interaction with NDUFA4.
Siyue QIN ; Pan YOU ; Hui YU ; Bo SU
Neuroscience Bulletin 2023;39(6):929-946
A decline in the activities of oxidative phosphorylation (OXPHOS) complexes has been consistently reported in amyotrophic lateral sclerosis (ALS) patients and animal models of ALS, although the underlying molecular mechanisms are still elusive. Here, we report that receptor expression enhancing protein 1 (REEP1) acts as an important regulator of complex IV assembly, which is pivotal to preserving motor neurons in SOD1G93A mice. We found the expression of REEP1 was greatly reduced in transgenic SOD1G93A mice with ALS. Moreover, forced expression of REEP1 in the spinal cord extended the lifespan, decelerated symptom progression, and improved the motor performance of SOD1G93A mice. The neuromuscular synaptic loss, gliosis, and even motor neuron loss in SOD1G93A mice were alleviated by increased REEP1 through augmentation of mitochondrial function. Mechanistically, REEP1 associates with NDUFA4, and plays an important role in preserving the integrity of mitochondrial complex IV. Our findings offer insights into the pathogenic mechanism of REEP1 deficiency in neurodegenerative diseases and suggest a new therapeutic target for ALS.
Mice
;
Animals
;
Amyotrophic Lateral Sclerosis/metabolism*
;
Superoxide Dismutase-1/metabolism*
;
Superoxide Dismutase/metabolism*
;
Mice, Transgenic
;
Spinal Cord/pathology*
;
Mitochondria/physiology*
;
Disease Models, Animal
7.Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells.
Pattage Madushan Dilhara Jayatissa FERNANDO ; Mei Jing PIAO ; Kyoung Ah KANG ; Yea Seong RYU ; Susara Ruwan Kumara Madduma HEWAGE ; Sung Wook CHAE ; Jin Won HYUN
Biomolecules & Therapeutics 2016;24(1):75-84
This study was designed to investigate the cytoprotective effect of rosmarinic acid (RA) on ultraviolet B (UVB)-induced oxidative stress in HaCaT keratinocytes. RA exerted a significant cytoprotective effect by scavenging intracellular ROS induced by UVB. RA also attenuated UVB-induced oxidative macromolecular damage, including protein carbonyl content, DNA strand breaks, and the level of 8-isoprostane. Furthermore, RA increased the expression and activity of superoxide dismutase, catalase, heme oxygenase-1, and their transcription factor Nrf2, which are decreased by UVB radiation. Collectively, these data indicate that RA can provide substantial cytoprotection against the adverse effects of UVB radiation by modulating cellular antioxidant systems, and has potential to be developed as a medical agent for ROS-induced skin diseases.
Antioxidants*
;
Catalase
;
Cytoprotection
;
DNA
;
Heme Oxygenase-1
;
Humans*
;
Keratinocytes
;
Oxidative Stress*
;
Reactive Oxygen Species
;
Skin Diseases
;
Superoxide Dismutase
;
Transcription Factors
8.Shielding of the geomagnetic field reduces hydrogen peroxide production in human neuroblastoma cell and inhibits the activity of CuZn superoxide dismutase.
Hai-Tao ZHANG ; Zi-Jian ZHANG ; Wei-Chuan MO ; Ping-Dong HU ; Hai-Min DING ; Ying LIU ; Qian HUA ; Rong-Qiao HE
Protein & Cell 2017;8(7):527-537
Accumulative evidence has shown the adverse effects of a geomagnetic field shielded condition, so called a hypomagnetic field (HMF), on the metabolic processes and oxidative stress in animals and cells. However, the underlying mechanism remains unclear. In this study, we evaluate the role of HMF on the regulation of cellular reactive oxygen species (ROS) in human neuroblastoma SH-SY5Y cells. We found that HMF exposure led to ROS decrease, and that restoring the decrease by additional HO rescued the HMF-enhanced cell proliferation. The measurements on ROS related indexes, including total anti-oxidant capacity, HO and superoxide anion levels, and superoxide dismutase (SOD) activity and expression, indicated that the HMF reduced HO production and inhibited the activity of CuZn-SOD. Moreover, the HMF accelerated the denaturation of CuZn-SOD as well as enhanced aggregation of CuZn-SOD protein, in vitro. Our findings indicate that CuZn-SOD is able to response to the HMF stress and suggest it a mediator of the HMF effect.
Cell Line, Tumor
;
Humans
;
Hydrogen Peroxide
;
metabolism
;
Magnetic Fields
;
Neoplasm Proteins
;
metabolism
;
Neuroblastoma
;
metabolism
;
Stress, Physiological
;
Superoxide Dismutase-1
;
metabolism
9.Induced pluripotent stem cell-derived motor neurons from amyotrophic lateral sclerosis (ALS) patients carrying different superoxide dismutase 1 mutations recapitulate pathological features of ALS.
Wen-Chao LIU ; Na LIU ; Yan WANG ; Chen HUANG ; Yan-Fang LI ; Hao WANG ; Xiao-Gang LI ; Min DENG
Chinese Medical Journal 2021;134(20):2457-2464
BACKGROUND:
Investigations of the pathogenic mechanisms in motor neurons (MNs) derived from amyotrophic lateral sclerosis (ALS) disease-specific induced pluripotent stem (iPS) cell lines could improve understanding of the issues affecting MNs. Therefore, in this study we explored mutant superoxide dismutase 1 (SOD1) protein expression in MNs derived from the iPS cell lines of ALS patients carrying different SOD1 mutations.
METHODS:
We generated induced pluripotent stem cell (iPSC) lines from two familial ALS (FALS) patients with SOD1-V14M and SOD1-C111Y mutations, and then differentiated them into MNs. We investigated levels of the SOD1 protein in iPSCs and MNs, the intracellular Ca2+ levels in MNs, and the lactate dehydrogenase (LDH) activity in the process of differentiation into the MNs derived from the controls and ALS patients' iPSCs.
RESULTS:
The iPSCs from the two FALS patients were capable of differentiation into MNs carrying different SOD1 mutations and differentially expressed MN markers. We detected high SOD1 protein expression and high intracellular calcium levels in both the MN and iPSCs that were derived from the two SOD1 mutant patients. However, at no time did we observe stronger LDH activity in the patient lines compared with the control lines.
CONCLUSIONS
MNs derived from patient-specific iPSC lines can recapitulate key aspects of ALS pathogenesis, providing a cell-based disease model to further elucidate disease pathogenesis and explore gene repair coupled with cell-replacement therapy. Incremental mutant expressions of SOD1 in MNs may have disrupted MN function, either causing or contributing to the intracellular calcium disturbances, which could lead to the occurrence and development of the disease.
Amyotrophic Lateral Sclerosis/genetics*
;
Humans
;
Induced Pluripotent Stem Cells
;
Motor Neurons
;
Mutation/genetics*
;
Superoxide Dismutase-1/genetics*
10.Neuroprotection via maintenance or increase of antioxidants and neurotrophic factors in ischemic gerbil hippocampus treated with tanshinone I.
Joon Ha PARK ; Ok Kyu PARK ; Bingchun YAN ; Ji Hyeon AHN ; In Hye KIM ; Jae-Chul LEE ; Seung-Hae KWON ; Ki-Yeon YOO ; Choong Hyun LEE ; In Koo HWANG ; Jung Hoon CHOI ; Moo-Ho WON ; Jong-Dai KIM
Chinese Medical Journal 2014;127(19):3396-3405
BACKGROUNDDanshen (Radix Salvia miltiorrhizae) has been used as a traditional medicine in Asia for treatment of various microcirculatory disturbance related diseases. Tanshinones are mainly hydrophobic active components, which have been isolated from Danshen and show various biological functions. In this study, we observed the neuroprotective effect of tanshinone I (TsI) against ischemic damage in the gerbil hippocampal CA1 region (CA1) after transient cerebral ischemia and examined its neuroprotective mechanism.
METHODSThe gerbils were divided into vehicle-treated-sham-group, vehicle-treated-ischemia-group, TsI-treated-sham-group, and TsI-treated-ischemia-group. TsI was administrated intraperitoneally three times (once a day for three days) before ischemia-reperfusion. The neuroprotective effect of TsI was examined using H&E staining, neuronal nuclei (NeuN) immunohistochemistry and Fluoro-Jade B staining. To investigate the neuroprotective mechanism of TsI after ischemia-reperfusion, immunohistochemical (IHC) and Western blotting analyses for Cu, Zn-superoxide dismutase (SOD1), Mn-superoxide dismutase (SOD2), brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-I (IGF-I) were performed.
RESULTSTreatment with TsI protected pyramidal neurons from ischemia-induced neuronal death in the CA1 after ischemia-reperfusion. In addition, treatment with TsI maintained the levels of SOD1 and SOD2 as determined by IHC and Western blotting in the CA1 after ischemia-reperfusion compared with the vehicle-ischemia-group. In addition, treatment with TsI increased the levels of BDNF and IGF-I determined by IHC and Western blotting in the TsI-treated-sham-group compared with the vehicle-treated-sham-group, and their levels were maintained in the stratum pyramidale of the ischemic CA1 in the TsI-treated-ischemia-group.
CONCLUSIONTreatment with TsI protects pyramidal neurons of the CA1 from ischemic damage induced by transient cerebral ischemia via the maintenance of antioxidants and the increase of neurotrophic factors.
Animals ; Antioxidants ; metabolism ; Blotting, Western ; Brain Ischemia ; drug therapy ; metabolism ; Brain-Derived Neurotrophic Factor ; metabolism ; Diterpenes, Abietane ; therapeutic use ; Gerbillinae ; Hippocampus ; metabolism ; Immunohistochemistry ; Insulin-Like Growth Factor I ; metabolism ; Male ; Nerve Growth Factors ; metabolism ; Superoxide Dismutase ; metabolism ; Superoxide Dismutase-1