1.Oral administration of Bifidobacterium breve improves anti-angiogenic drugs-derived oral mucosal wound healing impairment via upregulation of interleukin-10.
Qingxiang LI ; Yuke LI ; Qiao QIAO ; Ning ZHAO ; Yuanning YANG ; Lin WANG ; Yifei WANG ; Chuanbin GUO ; Yuxing GUO
International Journal of Oral Science 2023;15(1):56-56
Recent studies have suggested that long-term application of anti-angiogenic drugs may impair oral mucosal wound healing. This study investigated the effect of sunitinib on oral mucosal healing impairment in mice and the therapeutic potential of Bifidobacterium breve (B. breve). A mouse hard palate mucosal defect model was used to investigate the influence of sunitinib and/or zoledronate on wound healing. The volume and density of the bone under the mucosal defect were assessed by micro-computed tomography (micro-CT). Inflammatory factors were detected by protein microarray analysis and enzyme-linked immunosorbent assay (ELISA). The senescence and biological functions were tested in oral mucosal stem cells (OMSCs) treated with sunitinib. Ligated loop experiments were used to investigate the effect of oral B. breve. Neutralizing antibody for interleukin-10 (IL-10) was used to prove the critical role of IL-10 in the pro-healing process derived from B. breve. Results showed that sunitinib caused oral mucosal wound healing impairment in mice. In vitro, sunitinib induced cellular senescence in OMSCs and affected biological functions such as proliferation, migration, and differentiation. Oral administration of B. breve reduced oral mucosal inflammation and promoted wound healing via intestinal dendritic cells (DCs)-derived IL-10. IL-10 reversed cellular senescence caused by sunitinib in OMSCs, and IL-10 neutralizing antibody blocked the ameliorative effect of B. breve on oral mucosal wound healing under sunitinib treatment conditions. In conclusion, sunitinib induces cellular senescence in OMSCs and causes oral mucosal wound healing impairment and oral administration of B. breve could improve wound healing impairment via intestinal DCs-derived IL-10.
Animals
;
Mice
;
Interleukin-10
;
Bifidobacterium breve
;
Up-Regulation
;
Angiogenesis Inhibitors
;
Sunitinib
;
X-Ray Microtomography
;
Administration, Oral
;
Wound Healing
;
Antibodies, Neutralizing
2.Chloroquine inhibits viability of renal carcinoma cells and enhances sunitinib-induced caspase-dependent apoptosis.
Jing SUN ; Wei Dong SONG ; Si Yuan YAN ; Zhi Jun XI
Journal of Peking University(Health Sciences) 2018;50(5):778-784
OBJECTIVE:
To determine whether chloroquine (CQ), an often used inhibitor of late autophagy and autophagosome/lyosome fusion, can inhibit proliferation of renal carcinoma cells and investigate its effect on sunitinib (ST)-induced apoptosis.
METHODS:
Renal carcinoma cell line 786 O and ACHN had been used as cellular model and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay was carried out to detect the cell viability in response to CQ or ST treatment. Both transmission electron microscope and immunoblotting had been employed to observe apoptotic and autophagic process. To examine the involvement of autophagy in ST-dependent apoptosis, autophagy had been inhibited either chemically or genetically via utilizing autophagy inhibitor or specific small interference RNA (siRNA) targeted to either Ulk1 (unc-51-like kinase 1) or LC3 (microtubule associated protein 1 light chain 3 fusion protein), two essential autophagic proteins.
RESULTS:
Both ST and CQ induced cell viability loss, indicating that either of them could inhibit renal cancer cell proliferation. Clone formation experiments confirmed the aforementioned results. Furthermore, the combined ST with CQ synergistically promoted the loss of cell viability. By transmission electron microscopy and immunoblotting, we found that the ST induced both autophagy and caspase-dependent apoptosis. While 3-MA, an early autophagy inhibitor, reduced the ST-induced cleavage of poly (ADP-ribose) polymerase-1 (PARP-1), a substrate of caspase 3/7 and often used marker of caspase-dependent apoptosis, CQ promoted the ST-dependent PARP-1 cleavage, indicating that the early and late autophagy functioned differentially on the ST-activated apoptotic process. Moreover, the knock down of either Ulk1 or LC3 decreased the ST-caused apoptosis.Interestingly, we observed that rapamycin, a specific inhibitor of mTOR (mammalian target of rapamycin) and an inducer of autophagy, also showed to inhibit cell viability and increased the cleavage of PARP-1 in the ST-treated cells, suggesting that autophagy was likely to play a dual role in the regulation of the ST-induced apoptosis.
CONCLUSION
ST activates both apoptotic and autophagic process in renal carcinoma cells. Although autophagy precedes the ST-induced apoptosis, however, early and late autophagy functions differentially on the apoptotic process induced by this compound. Additionally, ST can coordinate with the inducer of autophagy to inhibit the cell proliferation. Further research in this direction will let us illuminate to utilize CQ as a potential drug in the treatment of renal carcinoma.
Animals
;
Antineoplastic Agents/pharmacology*
;
Antirheumatic Agents/pharmacology*
;
Apoptosis/drug effects*
;
Autophagy/drug effects*
;
Caspases
;
Cell Line, Tumor
;
Chloroquine/pharmacology*
;
Kidney Neoplasms/drug therapy*
;
Sunitinib/pharmacology*