1.A Case of Cancer Associated Retinopathy with Small Cell Lung Carcinoma.
Seongmin LIM ; Jongoh BAE ; Sanggeon CHO ; Sanggu KANG ; Eunyoung LEE ; Sungkuk KIM ; Young KIM ; Jinyoung KWAK ; Kwiwan KIM
Tuberculosis and Respiratory Diseases 2005;59(6):679-683
Cancer associated retinopathy (CAR) syndrome is a very rare ocular manifestation of paraneoplastic syndrome, and is characterized clinically by progressive visual impairment. Immune cross-reactivity between antigens in the cancerous tissue and antigens in the retina may play an important role in its pathogenesis, and most of cases are associated with lung carcinoma, particularly small cell lung cancer. The clinical triad of CAR is described as photosensitivity, ring scotomata, and an attenuated retinal arterial caliber. Here, we report a 61-year old male patient with CAR syndrome, who had small cell lung carcinoma in the stage of limited disease, with a brief review of the relevant literature.
Humans
;
Lung
;
Male
;
Middle Aged
;
Paraneoplastic Syndromes
;
Paraneoplastic Syndromes, Ocular*
;
Retina
;
Retinaldehyde
;
Small Cell Lung Carcinoma*
;
Vision Disorders
2.Therapeutic Effect of IL1β Priming Tonsil Derived-Mesenchymal Stem Cells in Osteoporosis
Minjoo YOO ; Sungkuk CHO ; Sunhye SHIN ; Jung-Mi KIM ; Hyeon-Gyeong PARK ; Sungyoo CHO ; Yu Kyeong HWANG ; Dae Hwi PARK
Tissue Engineering and Regenerative Medicine 2021;18(5):851-862
Background:
Stem cell therapies can be a new therapeutic strategy that may rebalance anabolic and anti-resorptive effects in osteoporosis patients. Tonsil-derived mesenchymal stem cells (TMSCs) can be an alternative therapeutic source for chronic degenerative diseases including osteoporosis. MSCs acquire immune regulatory function under the inflammatory cytokines. Since interleukin (IL) 1β is known to be one of inflammatory cytokines involved in osteoporosis progression, treatment of IL1β with TMSCs may enhance immunomodulatory function and therapeutic effects of TMSCs in osteoporosis.
Methods:
For IL1β priming, TMSCs were cultured in the presence of the medium containing IL1β for 1 day. Characteristics of IL1β priming TMSCs such as multipotent differentiation properties, anti-inflammatory potential, and suppression of osteoclast differentiation were assessed in vitro. For in vivo efficacy study, IL1β priming TMSCs were intravenously infused twice with ovariectomized (OVX) osteoporosis mouse model, and blood serum and bone parameters from micro computed tomography images were analyzed.
Results:
IL1β priming TMSCs had an enhanced osteogenic differentiation and secreted factors that regulate both osteoclastogenesis and osteoblastogenesis. IL1β priming TMSCs also suppressed proliferation of peripheral blood mononuclear cells (PBMCs) and decreased expression of Receptor activator of nuclear factor kappa-Β ligand (RANKL) in PHA-stimulated PBMCs. Furthermore, osteoclast specific genes such as Nuclear factor of activated T cells c1 (NFATc1) were effectively down regulated when co-cultured with IL1β priming TMSCs in RANKL induced osteoclasts. In OVX mice, IL1β priming TMSCs induced low level of serum RANKL/osteoprotegerin (OPG) ratio on the first day of the last administration. Four weeks after the last administration, bone mineral density and serum Gla-osteocalcin were increased in IL1β priming TMSC-treated OVX mice. Furthermore, bone formation and bone resorption markers that had been decreased in OVX mice with low calcium diet were recovered by infusion of IL1β priming TMSCs.
Conclusion
IL1β priming can endow constant therapeutic efficacy with TMSCs, which may contribute to improve bone density and maintain bone homeostasis in postmenopausal osteoporosis. Therefore, IL1β priming TMSCs can be a new therapeutic option for treating postmenopausal osteoporosis.
3.Therapeutic Effect of IL1β Priming Tonsil Derived-Mesenchymal Stem Cells in Osteoporosis
Minjoo YOO ; Sungkuk CHO ; Sunhye SHIN ; Jung-Mi KIM ; Hyeon-Gyeong PARK ; Sungyoo CHO ; Yu Kyeong HWANG ; Dae Hwi PARK
Tissue Engineering and Regenerative Medicine 2021;18(5):851-862
Background:
Stem cell therapies can be a new therapeutic strategy that may rebalance anabolic and anti-resorptive effects in osteoporosis patients. Tonsil-derived mesenchymal stem cells (TMSCs) can be an alternative therapeutic source for chronic degenerative diseases including osteoporosis. MSCs acquire immune regulatory function under the inflammatory cytokines. Since interleukin (IL) 1β is known to be one of inflammatory cytokines involved in osteoporosis progression, treatment of IL1β with TMSCs may enhance immunomodulatory function and therapeutic effects of TMSCs in osteoporosis.
Methods:
For IL1β priming, TMSCs were cultured in the presence of the medium containing IL1β for 1 day. Characteristics of IL1β priming TMSCs such as multipotent differentiation properties, anti-inflammatory potential, and suppression of osteoclast differentiation were assessed in vitro. For in vivo efficacy study, IL1β priming TMSCs were intravenously infused twice with ovariectomized (OVX) osteoporosis mouse model, and blood serum and bone parameters from micro computed tomography images were analyzed.
Results:
IL1β priming TMSCs had an enhanced osteogenic differentiation and secreted factors that regulate both osteoclastogenesis and osteoblastogenesis. IL1β priming TMSCs also suppressed proliferation of peripheral blood mononuclear cells (PBMCs) and decreased expression of Receptor activator of nuclear factor kappa-Β ligand (RANKL) in PHA-stimulated PBMCs. Furthermore, osteoclast specific genes such as Nuclear factor of activated T cells c1 (NFATc1) were effectively down regulated when co-cultured with IL1β priming TMSCs in RANKL induced osteoclasts. In OVX mice, IL1β priming TMSCs induced low level of serum RANKL/osteoprotegerin (OPG) ratio on the first day of the last administration. Four weeks after the last administration, bone mineral density and serum Gla-osteocalcin were increased in IL1β priming TMSC-treated OVX mice. Furthermore, bone formation and bone resorption markers that had been decreased in OVX mice with low calcium diet were recovered by infusion of IL1β priming TMSCs.
Conclusion
IL1β priming can endow constant therapeutic efficacy with TMSCs, which may contribute to improve bone density and maintain bone homeostasis in postmenopausal osteoporosis. Therefore, IL1β priming TMSCs can be a new therapeutic option for treating postmenopausal osteoporosis.