1.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
2.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
3.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
4.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
5.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
6.Genetic Risk Loci and Familial Associations in Migraine:A Genome-Wide Association Study in the Han Chinese Population of Taiwan
Yi LIU ; Po-Kuan YEH ; Yu-Kai LIN ; Chih-Sung LIANG ; Chia-Lin TSAI ; Guan-Yu LIN ; Yu-Chin AN ; Ming-Chen TSAI ; Kuo-Sheng HUNG ; Fu-Chi YANG
Journal of Clinical Neurology 2024;20(4):439-449
Background:
and Purpose Migraine is a condition that is often observed to run in families, but its complex genetic background remains unclear. This study aimed to identify the genetic factors influencing migraines and their potential association with the family medical history.
Methods:
We performed a comprehensive genome-wide association study of a cohort of 1,561 outpatients with migraine and 473 individuals without migraine in Taiwan, including Han Chinese individuals with or without a family history of migraine. By analyzing the detailed headache history of the patients and their relatives we aimed to isolate potential genetic markers associated with migraine while considering factors such as sex, episodic vs. chronic migraine, and the presence of aura.
Results:
We revealed novel genetic risk loci, including rs2287637 in DEAD-Box helicase 1 and long intergenic non-protein coding RNA 1804 and rs12055943 in engulfment and cell motility 1, that were correlated with the family history of migraine. We also found a genetic location downstream of mesoderm posterior BHLH transcription factor 2 associated with episodic migraine, whereas loci within the ubiquitin-specific peptidase 26 exonic region, dual specificity phosphatase 9 and pregnancy-upregulated non-ubiquitous CaM kinase intergenic regions, and poly (ADP-ribose) polymerase 1 and STUM were linked to chronic migraine. We additionally identified genetic regionsassociated with the presence or absence of aura. A locus between LINC02561 and urocortin 3 was predominantly observed in female patients. Moreover, three different single-nucleotide polymorphisms were associated with the family history of migraine in the control group.
Conclusions
This study has identified new genetic locations associated with migraine and its family history in a Han Chinese population, reinforcing the genetic background of migraine. The findings point to potential candidate genes that should be investigated further.
7.Benzodiazepine-Associated Carcinogenesis: Focus on Lorazepam-Associated Cancer Biomarker Changes in Overweight Individuals.
Shih Chieh KU ; Pei Shen HO ; Yu Ting TSENG ; Ta Chuan YEH ; Shu Li CHENG ; Chih Sung LIANG
Psychiatry Investigation 2018;15(9):900-906
OBJECTIVE: Cellular, animal, and human epidemiological studies suggested that benzodiazepines increase the risk of cancer and cancer mortality. Obesity is also clearly linked to carcinogenesis. However, no human studies have examined benzodiazepine-associated carcinogenesis as assessed by changes in cancer biomarkers. METHODS: A total of 19 patients were recruited, and received a 6-week treatment of 0.5 mg lorazepam. The measured cancer biomarkers were angiopoietin-2 (ANG-2), soluble CD40 ligand, epidermal growth factor, endoglin, soluble Fas ligand (sFASL), heparin-binding EGF-like growth factor (HB-EGF), insulin-like growth factor binding protein, interleukin (IL)-6, IL-8, IL-18, plasminogen activator inhibitor (PLGF), placental growth factor, transforming growth factor (TGF)-α, tumor necrosis factor (TNF)-α, urokinase-type plasminogen (uPA), vascular endothelial growth factor (VEGF)-A, VEGF-C, and VEGF-D. RESULTS: Six cancer biomarkers were significantly increased in all patients as a whole. The subgroup analysis revealed a distinct pattern of change. Overweight patients showed a significant increase in 11 cancer biomarkers, including ANG-2, sFASL, HB-EGF, IL-8, PLGF, TGF-α, TNF-α, uPA, VEGF-A, VEGF-C, and VEGF-D. However, normal-weight patients did not show any changes in cancer biomarkers. CONCLUSION: Adiposity may have primed the carcinogenic potential, leading to lorazepam-associated carcinogenesis in overweight patients. Epidemiological studies addressing this issue should consider the potential modulator contributing to benzodiazepine-associated carcinogenesis.
Adiposity
;
Angiopoietin-2
;
Animals
;
Benzodiazepines
;
Biomarkers, Tumor
;
Carcinogenesis*
;
Carrier Proteins
;
CD40 Ligand
;
Epidemiologic Studies
;
Epidermal Growth Factor
;
Fas Ligand Protein
;
Heparin-binding EGF-like Growth Factor
;
Humans
;
Interleukin-18
;
Interleukin-8
;
Interleukins
;
Lorazepam
;
Mortality
;
Obesity
;
Overweight*
;
Plasminogen
;
Plasminogen Activators
;
Transforming Growth Factors
;
Tumor Necrosis Factor-alpha
;
Vascular Endothelial Growth Factor A
;
Vascular Endothelial Growth Factor C
;
Vascular Endothelial Growth Factor D
8.Intercalated Treatment Following Rebiopsy Is Associated with a Shorter Progression-Free Survival of Osimertinib Treatment.
Jeng Sen TSENG ; Tsung Ying YANG ; Kun Chieh CHEN ; Kuo Hsuan HSU ; Yen Hsiang HUANG ; Kang Yi SU ; Sung Liang YU ; Gee Chen CHANG
Cancer Research and Treatment 2018;50(4):1164-1174
PURPOSE: Epidermal growth factor receptor (EGFR) T790M mutation serves as an important predictor of osimertinib efficacy. However, little is known about how it works among patients with various timings of T790M emergence and treatment. MATERIALS AND METHODS: Advanced EGFR-mutant lung adenocarcinoma patients with positive T790M mutation in tumor were retrospectively enrolled and observed to determine the outcomes of osimertinib treatment. We evaluated the association between patients’ characteristics and the efficacy of osimertinib treatment, particularly with respect to the timing of T790M emergence and osimertinib prescription. RESULTS: A total of 91 patients were enrolled, including 14 (15.4%) with primary and 77 (84.6%) with acquired T790M mutation. The objective response rate and disease controlratewere 60.9% and 85.1%, respectively. The median progression-free survival (PFS) and overall survival were 11.5 months (95% confidence interval [CI], 9.0 to 14.0) and 30.4 months (95% CI, 11.3 to 49.5), respectively. There was no significant difference in response rate and PFS between primary and acquired T790M populations. In the acquired T790M subgroup, patientswho received osimertinib after T790M had been confirmed by rebiopsy had a longer PFS than those with intercalated treatments between rebiopsy and osimertinib prescription (14.0 months [95% CI, 9.0 to 18.9] vs. 7.2 months [95% CI, 3.7 to 10.8]; adjusted hazard ratio, 0.48 [95% CI, 0.24 to 0.98; p=0.043]). Rebiopsy timing did not influence the outcome. CONCLUSION: Osimertinib prescription with intercalated treatment following rebiopsy but not the timing of T790M emergence influenced the treatment outcome. We suggest that it is better to start osimertinib treatment once T790M mutation has been confirmed by biopsy.
Adenocarcinoma
;
Biopsy
;
Disease-Free Survival*
;
Humans
;
Lung
;
Prescriptions
;
Receptor, Epidermal Growth Factor
;
Retrospective Studies
;
Treatment Outcome
9.Incongruent Expression of Brain-Derived Neurotrophic Factor and Cortisol in Schizophrenia: Results from a Randomized Controlled Trial of Laughter Intervention
Shu-Li CHENG ; Fu-Chi YANG ; Hsuan-Te CHU ; Chia-Kuang TSAI ; Shih-Chieh KU ; Yu-Ting TSENG ; Ta-Chuan YEH ; Chih-Sung LIANG
Psychiatry Investigation 2020;17(12):1191-1199
Objective:
Schizophrenia has been associated with dysfunction of the hypothalamic-pituitary-adrenal axis. Furthermore, alterations in neurotrophic factors might contribute to the pathogenesis of schizophrenia. We aimed to evaluate the effects of a simulated laughter intervention on the levels of cortisol and BDNF and to determine whether the effects associated with simulated laughter could be sustained after discontinuation of the intervention.
Methods:
In this randomized controlled study, patients with schizophrenia according to DSM-IV clinical criteria were randomly assigned to receive either 8-week-long simulated laughter intervention (n=32) or treatment-as-usual group (control group, n=27). The serum levels of BDNF and cortisol were measured at baseline, week 8, and four weeks after discontinuation (week 12) of the intervention program.
Results:
After an 8-week simulated laughter intervention, the laughter group had significantly higher levels of BDNF; however, four weeks after discontinuation of the intervention, the levels of BDNF significantly dropped. Interestingly, the levels of cortisol did not change significantly at week 8, but they were significantly elevated at week 12. The levels of BDNF and cortisol in the control group did not change significantly between week 0 and week 8.
Conclusion
These findings suggest that the simulated laughter intervention has an early effect on neurogenesis with a significant delayed effect on stress regulation in subjects with schizophrenia.
10.Incongruent Expression of Brain-Derived Neurotrophic Factor and Cortisol in Schizophrenia: Results from a Randomized Controlled Trial of Laughter Intervention
Shu-Li CHENG ; Fu-Chi YANG ; Hsuan-Te CHU ; Chia-Kuang TSAI ; Shih-Chieh KU ; Yu-Ting TSENG ; Ta-Chuan YEH ; Chih-Sung LIANG
Psychiatry Investigation 2020;17(12):1191-1199
Objective:
Schizophrenia has been associated with dysfunction of the hypothalamic-pituitary-adrenal axis. Furthermore, alterations in neurotrophic factors might contribute to the pathogenesis of schizophrenia. We aimed to evaluate the effects of a simulated laughter intervention on the levels of cortisol and BDNF and to determine whether the effects associated with simulated laughter could be sustained after discontinuation of the intervention.
Methods:
In this randomized controlled study, patients with schizophrenia according to DSM-IV clinical criteria were randomly assigned to receive either 8-week-long simulated laughter intervention (n=32) or treatment-as-usual group (control group, n=27). The serum levels of BDNF and cortisol were measured at baseline, week 8, and four weeks after discontinuation (week 12) of the intervention program.
Results:
After an 8-week simulated laughter intervention, the laughter group had significantly higher levels of BDNF; however, four weeks after discontinuation of the intervention, the levels of BDNF significantly dropped. Interestingly, the levels of cortisol did not change significantly at week 8, but they were significantly elevated at week 12. The levels of BDNF and cortisol in the control group did not change significantly between week 0 and week 8.
Conclusion
These findings suggest that the simulated laughter intervention has an early effect on neurogenesis with a significant delayed effect on stress regulation in subjects with schizophrenia.