1.Efficacy of Bone Regeneration Cell Therapy Using Mesenchymal Stem Cells Originating from Embryonic Stem Cells in Animal Models; Bone Defects and Osteomyelitis
Jin-Ho PARK ; Han-Sol BAE ; Ingeun KIM ; Jiwoon JUNG ; Yoonho ROH ; Dongbin LEE ; Tae Sung HWANG ; Hee-Chun LEE ; June-Ho BYUN
Tissue Engineering and Regenerative Medicine 2025;22(1):145-157
BACKGROUND:
Bone defects are commonly encountered due to accidents, diseases, or aging, and the demand for effective bone regeneration, particularly for dental implants, is increasing in our aging society. Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies; however, obtaining sufficient quantities of these cells for clinical applications remains challenging. DW-MSCs, derived from embryonic stem cells and developed by Daewoong Pharmaceutical, exhibit a robust proliferative capacity even after extensive culture.
METHODS:
This study explores the therapeutic potential of DW-MSCs in various animal models of bone defects. DWMSCs were expanded for over 13 passages for in vivo use in rat and canine models of bone defects and osteomyelitis. The research focused on the in vivo osteogenic differentiation of DW-MSCs, the establishment of a fibrin-based system for bone regeneration, the assessment of bone repair following treatment in animal models, and comparisons with commercially available bone grafts.
RESULTS:
Results showed that DW-MSCs exhibited superior osteogenic differentiation compared to other materials, and the fibrinization process not only preserved but enhanced their proliferation and differentiation capabilities through a 3D culture effect. In both bone defect models, DW-MSCs facilitated significant bone regeneration, reduced inflammatory responses in osteomyelitis, and achieved effective bone healing. The therapeutic outcomes of DW-MSCs were comparable to those of commercial bone grafts but demonstrated qualitatively superior bone tissue restructuring.
CONCLUSION
Our findings suggest that DW-MSCs offer a promising approach for bone regeneration therapies due to their high efficacy and anti-inflammatory properties.
2.Efficacy of Bone Regeneration Cell Therapy Using Mesenchymal Stem Cells Originating from Embryonic Stem Cells in Animal Models; Bone Defects and Osteomyelitis
Jin-Ho PARK ; Han-Sol BAE ; Ingeun KIM ; Jiwoon JUNG ; Yoonho ROH ; Dongbin LEE ; Tae Sung HWANG ; Hee-Chun LEE ; June-Ho BYUN
Tissue Engineering and Regenerative Medicine 2025;22(1):145-157
BACKGROUND:
Bone defects are commonly encountered due to accidents, diseases, or aging, and the demand for effective bone regeneration, particularly for dental implants, is increasing in our aging society. Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies; however, obtaining sufficient quantities of these cells for clinical applications remains challenging. DW-MSCs, derived from embryonic stem cells and developed by Daewoong Pharmaceutical, exhibit a robust proliferative capacity even after extensive culture.
METHODS:
This study explores the therapeutic potential of DW-MSCs in various animal models of bone defects. DWMSCs were expanded for over 13 passages for in vivo use in rat and canine models of bone defects and osteomyelitis. The research focused on the in vivo osteogenic differentiation of DW-MSCs, the establishment of a fibrin-based system for bone regeneration, the assessment of bone repair following treatment in animal models, and comparisons with commercially available bone grafts.
RESULTS:
Results showed that DW-MSCs exhibited superior osteogenic differentiation compared to other materials, and the fibrinization process not only preserved but enhanced their proliferation and differentiation capabilities through a 3D culture effect. In both bone defect models, DW-MSCs facilitated significant bone regeneration, reduced inflammatory responses in osteomyelitis, and achieved effective bone healing. The therapeutic outcomes of DW-MSCs were comparable to those of commercial bone grafts but demonstrated qualitatively superior bone tissue restructuring.
CONCLUSION
Our findings suggest that DW-MSCs offer a promising approach for bone regeneration therapies due to their high efficacy and anti-inflammatory properties.
3.Efficacy of Bone Regeneration Cell Therapy Using Mesenchymal Stem Cells Originating from Embryonic Stem Cells in Animal Models; Bone Defects and Osteomyelitis
Jin-Ho PARK ; Han-Sol BAE ; Ingeun KIM ; Jiwoon JUNG ; Yoonho ROH ; Dongbin LEE ; Tae Sung HWANG ; Hee-Chun LEE ; June-Ho BYUN
Tissue Engineering and Regenerative Medicine 2025;22(1):145-157
BACKGROUND:
Bone defects are commonly encountered due to accidents, diseases, or aging, and the demand for effective bone regeneration, particularly for dental implants, is increasing in our aging society. Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies; however, obtaining sufficient quantities of these cells for clinical applications remains challenging. DW-MSCs, derived from embryonic stem cells and developed by Daewoong Pharmaceutical, exhibit a robust proliferative capacity even after extensive culture.
METHODS:
This study explores the therapeutic potential of DW-MSCs in various animal models of bone defects. DWMSCs were expanded for over 13 passages for in vivo use in rat and canine models of bone defects and osteomyelitis. The research focused on the in vivo osteogenic differentiation of DW-MSCs, the establishment of a fibrin-based system for bone regeneration, the assessment of bone repair following treatment in animal models, and comparisons with commercially available bone grafts.
RESULTS:
Results showed that DW-MSCs exhibited superior osteogenic differentiation compared to other materials, and the fibrinization process not only preserved but enhanced their proliferation and differentiation capabilities through a 3D culture effect. In both bone defect models, DW-MSCs facilitated significant bone regeneration, reduced inflammatory responses in osteomyelitis, and achieved effective bone healing. The therapeutic outcomes of DW-MSCs were comparable to those of commercial bone grafts but demonstrated qualitatively superior bone tissue restructuring.
CONCLUSION
Our findings suggest that DW-MSCs offer a promising approach for bone regeneration therapies due to their high efficacy and anti-inflammatory properties.
4.Efficacy of Bone Regeneration Cell Therapy Using Mesenchymal Stem Cells Originating from Embryonic Stem Cells in Animal Models; Bone Defects and Osteomyelitis
Jin-Ho PARK ; Han-Sol BAE ; Ingeun KIM ; Jiwoon JUNG ; Yoonho ROH ; Dongbin LEE ; Tae Sung HWANG ; Hee-Chun LEE ; June-Ho BYUN
Tissue Engineering and Regenerative Medicine 2025;22(1):145-157
BACKGROUND:
Bone defects are commonly encountered due to accidents, diseases, or aging, and the demand for effective bone regeneration, particularly for dental implants, is increasing in our aging society. Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies; however, obtaining sufficient quantities of these cells for clinical applications remains challenging. DW-MSCs, derived from embryonic stem cells and developed by Daewoong Pharmaceutical, exhibit a robust proliferative capacity even after extensive culture.
METHODS:
This study explores the therapeutic potential of DW-MSCs in various animal models of bone defects. DWMSCs were expanded for over 13 passages for in vivo use in rat and canine models of bone defects and osteomyelitis. The research focused on the in vivo osteogenic differentiation of DW-MSCs, the establishment of a fibrin-based system for bone regeneration, the assessment of bone repair following treatment in animal models, and comparisons with commercially available bone grafts.
RESULTS:
Results showed that DW-MSCs exhibited superior osteogenic differentiation compared to other materials, and the fibrinization process not only preserved but enhanced their proliferation and differentiation capabilities through a 3D culture effect. In both bone defect models, DW-MSCs facilitated significant bone regeneration, reduced inflammatory responses in osteomyelitis, and achieved effective bone healing. The therapeutic outcomes of DW-MSCs were comparable to those of commercial bone grafts but demonstrated qualitatively superior bone tissue restructuring.
CONCLUSION
Our findings suggest that DW-MSCs offer a promising approach for bone regeneration therapies due to their high efficacy and anti-inflammatory properties.
5.Efficacy of Bone Regeneration Cell Therapy Using Mesenchymal Stem Cells Originating from Embryonic Stem Cells in Animal Models; Bone Defects and Osteomyelitis
Jin-Ho PARK ; Han-Sol BAE ; Ingeun KIM ; Jiwoon JUNG ; Yoonho ROH ; Dongbin LEE ; Tae Sung HWANG ; Hee-Chun LEE ; June-Ho BYUN
Tissue Engineering and Regenerative Medicine 2025;22(1):145-157
BACKGROUND:
Bone defects are commonly encountered due to accidents, diseases, or aging, and the demand for effective bone regeneration, particularly for dental implants, is increasing in our aging society. Mesenchymal stem cells (MSCs) are promising candidates for regenerative therapies; however, obtaining sufficient quantities of these cells for clinical applications remains challenging. DW-MSCs, derived from embryonic stem cells and developed by Daewoong Pharmaceutical, exhibit a robust proliferative capacity even after extensive culture.
METHODS:
This study explores the therapeutic potential of DW-MSCs in various animal models of bone defects. DWMSCs were expanded for over 13 passages for in vivo use in rat and canine models of bone defects and osteomyelitis. The research focused on the in vivo osteogenic differentiation of DW-MSCs, the establishment of a fibrin-based system for bone regeneration, the assessment of bone repair following treatment in animal models, and comparisons with commercially available bone grafts.
RESULTS:
Results showed that DW-MSCs exhibited superior osteogenic differentiation compared to other materials, and the fibrinization process not only preserved but enhanced their proliferation and differentiation capabilities through a 3D culture effect. In both bone defect models, DW-MSCs facilitated significant bone regeneration, reduced inflammatory responses in osteomyelitis, and achieved effective bone healing. The therapeutic outcomes of DW-MSCs were comparable to those of commercial bone grafts but demonstrated qualitatively superior bone tissue restructuring.
CONCLUSION
Our findings suggest that DW-MSCs offer a promising approach for bone regeneration therapies due to their high efficacy and anti-inflammatory properties.
6.Capsular Contracture After Postmastectomy Radiation in Implant-Based Breast Reconstruction:Effect of Implant Pocket and Two-Stage Surgery
Sohyun MOON ; Kyunghyun MIN ; Tae Ho KIM ; Jung Hwan UM ; Yoonwon KOOK ; Seung Ho BAEK ; In Sik YUN ; Tai Suk ROH ; Soong June BAE ; Joon JEONG ; Sung Gwe AHN ; Young Seok KIM
Journal of Breast Cancer 2024;27(6):395-406
Capsular contracture (CC) is a concerning issue for individuals undergoing postmastectomy radiation therapy (PMRT) with implant-based breast reconstruction. This study investigated whether the extent of CC and implant migration differs based on implant placement and the reconstruction stage. Insertion plane and stage of breast implants were investigated, and the presence and severe cases of CC and implant migration were analyzed. Among 195 participants, 83 were in the pre-pectoral group, and 112 were in the sub-pectoral group. Two-staged surgery was performed on 116 patients, while 79 underwent direct-to-implant (DTI).Notably, The occurrence of CC (prepectoral, 17 [20.48%] and subpectoral, 42 [37.50%];p = 0.011), CC severity (prepectoral, 4 [4.82%] and subpectoral, 17 [15.17%]; p = 0.021), and implant upward migration (prepectoral, 15 [18.07%] and subpectoral, 38 [33.92%]; p = 0.014) significantly varied between the two groups. The incidence of CC was more common in the DTI group (odds ratio [OR], 2.283; 95% confidence interval [CI], 1.164–4.478). Furthermore, subpectoral placement was an independent risk factor for occurrence (OR, 2.989; 95% CI, 1.476–6.054) and severity of CC (OR, 38.552; 95% CI, 1.855–801.186) and upward implant migration (OR, 2.531; 95% CI, 1.263–5.071). Our findings suggest that pre-pectoral reconstruction and the two-stage operation benefit patients who may undergo PMRT. These approaches can help reduce the incidence of CC and abnormal implant migration following radiation, leading to improved aesthetic outcomes and greater patient satisfaction.
7.Capsular Contracture After Postmastectomy Radiation in Implant-Based Breast Reconstruction:Effect of Implant Pocket and Two-Stage Surgery
Sohyun MOON ; Kyunghyun MIN ; Tae Ho KIM ; Jung Hwan UM ; Yoonwon KOOK ; Seung Ho BAEK ; In Sik YUN ; Tai Suk ROH ; Soong June BAE ; Joon JEONG ; Sung Gwe AHN ; Young Seok KIM
Journal of Breast Cancer 2024;27(6):395-406
Capsular contracture (CC) is a concerning issue for individuals undergoing postmastectomy radiation therapy (PMRT) with implant-based breast reconstruction. This study investigated whether the extent of CC and implant migration differs based on implant placement and the reconstruction stage. Insertion plane and stage of breast implants were investigated, and the presence and severe cases of CC and implant migration were analyzed. Among 195 participants, 83 were in the pre-pectoral group, and 112 were in the sub-pectoral group. Two-staged surgery was performed on 116 patients, while 79 underwent direct-to-implant (DTI).Notably, The occurrence of CC (prepectoral, 17 [20.48%] and subpectoral, 42 [37.50%];p = 0.011), CC severity (prepectoral, 4 [4.82%] and subpectoral, 17 [15.17%]; p = 0.021), and implant upward migration (prepectoral, 15 [18.07%] and subpectoral, 38 [33.92%]; p = 0.014) significantly varied between the two groups. The incidence of CC was more common in the DTI group (odds ratio [OR], 2.283; 95% confidence interval [CI], 1.164–4.478). Furthermore, subpectoral placement was an independent risk factor for occurrence (OR, 2.989; 95% CI, 1.476–6.054) and severity of CC (OR, 38.552; 95% CI, 1.855–801.186) and upward implant migration (OR, 2.531; 95% CI, 1.263–5.071). Our findings suggest that pre-pectoral reconstruction and the two-stage operation benefit patients who may undergo PMRT. These approaches can help reduce the incidence of CC and abnormal implant migration following radiation, leading to improved aesthetic outcomes and greater patient satisfaction.
8.Capsular Contracture After Postmastectomy Radiation in Implant-Based Breast Reconstruction:Effect of Implant Pocket and Two-Stage Surgery
Sohyun MOON ; Kyunghyun MIN ; Tae Ho KIM ; Jung Hwan UM ; Yoonwon KOOK ; Seung Ho BAEK ; In Sik YUN ; Tai Suk ROH ; Soong June BAE ; Joon JEONG ; Sung Gwe AHN ; Young Seok KIM
Journal of Breast Cancer 2024;27(6):395-406
Capsular contracture (CC) is a concerning issue for individuals undergoing postmastectomy radiation therapy (PMRT) with implant-based breast reconstruction. This study investigated whether the extent of CC and implant migration differs based on implant placement and the reconstruction stage. Insertion plane and stage of breast implants were investigated, and the presence and severe cases of CC and implant migration were analyzed. Among 195 participants, 83 were in the pre-pectoral group, and 112 were in the sub-pectoral group. Two-staged surgery was performed on 116 patients, while 79 underwent direct-to-implant (DTI).Notably, The occurrence of CC (prepectoral, 17 [20.48%] and subpectoral, 42 [37.50%];p = 0.011), CC severity (prepectoral, 4 [4.82%] and subpectoral, 17 [15.17%]; p = 0.021), and implant upward migration (prepectoral, 15 [18.07%] and subpectoral, 38 [33.92%]; p = 0.014) significantly varied between the two groups. The incidence of CC was more common in the DTI group (odds ratio [OR], 2.283; 95% confidence interval [CI], 1.164–4.478). Furthermore, subpectoral placement was an independent risk factor for occurrence (OR, 2.989; 95% CI, 1.476–6.054) and severity of CC (OR, 38.552; 95% CI, 1.855–801.186) and upward implant migration (OR, 2.531; 95% CI, 1.263–5.071). Our findings suggest that pre-pectoral reconstruction and the two-stage operation benefit patients who may undergo PMRT. These approaches can help reduce the incidence of CC and abnormal implant migration following radiation, leading to improved aesthetic outcomes and greater patient satisfaction.
9.Complications Including Capsular Contracture in Direct-to-Implant Breast Reconstruction With Textured Anatomical Versus Smooth Round Implants: A Single Center Retrospective Analysis
Hong Bae JEON ; Minyoung LEE ; Tai Suk ROH ; Joon JEONG ; Sung Gwe AHN ; Soong June BAE ; Nara LEE ; Young Seok KIM
Journal of Breast Cancer 2023;26(1):25-34
Purpose:
Implant-based breast reconstruction is the most common reconstruction method used after mastectomy in breast cancer patients. Many studies have compared the smooth round implants and textured anatomical implants. This study aimed to compare the complications, including capsular contracture, between these two implants used in direct-toimplant (DTI) breast reconstruction.
Methods:
This retrospective chart review was performed using a prospectively maintained database from a single center. We identified patients who underwent mastectomy with DTI single-stage breast reconstruction at our hospital between August 2011 and June 2021. The overall complications, including capsular contracture, postoperative infection, seroma, hematoma, implant rupture, implant exposure, rippling, implant malposition, and nipple necrosis, were analyzed.
Results:
In total, 340 breasts of 323 patients were reconstructed by the DTI approach using either textured anatomical (n = 203) or smooth round (n = 137) implants. The incidence of overall complications and capsular contracture was significantly lower with smooth round implants than with textured anatomical implants. Multivariate analysis showed that smooth round implants were associated with a reduced risk of overall complications (odds ratio [OR], 0.465; 95% confidence interval [CI], 0.265–0.813) and capsular contracture (OR, 0.475; 95% CI, 0.235–0.962). Particularly, smooth round implants were associated with a decreased risk of overall complications in patients not receiving adjuvant chemotherapy and a decreased risk of capsular contracture in patients with body mass index < 25 kg/m2 and in those not receiving adjuvant radiotherapy.
Conclusion
Smooth round implants demonstrated a decreased risk of overall complications and capsular contracture when compared with textured anatomical implants. These results may be utilized in counseling patients regarding the advantages and disadvantages of smooth round implants in DTI breast reconstruction.
10.The role of postoperative neutrophil-to-lymphocyte ratio as a predictor of postoperative major complications following total gastrectomy for gastric cancer
Jae Seung KWAK ; Sung Gon KIM ; Sang Eok LEE ; Won Jun CHOI ; Dae Sung YOON ; In Seok CHOI ; Ju Ik MOON ; Nak Song SUNG ; Seong Uk KWON ; In Eui BAE ; Seung Jae LEE ; Seung Jae ROH
Annals of Surgical Treatment and Research 2022;103(3):153-159
Purpose:
This study was performed to investigate the role of the perioperative neutrophil-to-lymphocyte ratio (NLR) as an early predictor of major postoperative complications after total gastrectomy for gastric cancer.
Methods:
This single-center, retrospective study reviewed consecutive patients with gastric cancer who underwent total gastrectomy at a single institution from March 2009 to March 2021. The postoperative complications were graded according to the Clavien-Dindo classification. We analyzed the patient demographics and surgical outcomes according to the grade of postoperative complications in the major complications group (≥grade III) and the no major complications group (

Result Analysis
Print
Save
E-mail