1.SP-8356, a (1S)-(-)-Verbenone Derivative, Inhibits the Growth and Motility of Liver Cancer Cells by Regulating NF-κB and ERK Signaling
Dong Hwi KIM ; Hyo Jeong YONG ; Sunam MANDER ; Huong Thi NGUYEN ; Lan Phuong NGUYEN ; Hee-Kyung PARK ; Hyo Kyeong CHA ; Won-Ki KIM ; Jong-Ik HWANG
Biomolecules & Therapeutics 2021;29(3):331-341
Liver cancer is a common tumor and currently the second leading cause of cancer-related mortality globally. Liver cancer is highly related to inflammation as more than 90% of liver cancer arises in the context of hepatic inflammation, such as hepatitis B virus and hepatitis C virus infection. Despite significant improvements in the therapeutic modalities for liver cancer, patient prognosis is not satisfactory due to the limited efficacy of current drug therapies in anti-metastatic activity. Therefore, developing new effective anti-cancer agents with anti-metastatic activity is important for the treatment of liver cancer. In this study, SP-8356, a verbenone derivative with anti-inflammatory activity, was investigated for its effect on the growth and migration of liver cancer cells. Our findings demonstrated that SP-8356 inhibits the proliferation of liver cancer cells by inducing apoptosis and suppressing the mobility and invasion ability of liver cancer cells. Functional studies revealed that SP-8356 inhibits the mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways, which are related to cell proliferation and metastasis, resulting in the downregulation of metastasis-related genes. Moreover, using an orthotopic liver cancer model, tumor growth was significantly decreased following treatment with SP-8356. Thus, this study suggests that SP-8356 may be a potential agent for the treatment of liver cancer with multimodal regulation.
2.SP-8356, a (1S)-(-)-Verbenone Derivative, Inhibits the Growth and Motility of Liver Cancer Cells by Regulating NF-κB and ERK Signaling
Dong Hwi KIM ; Hyo Jeong YONG ; Sunam MANDER ; Huong Thi NGUYEN ; Lan Phuong NGUYEN ; Hee-Kyung PARK ; Hyo Kyeong CHA ; Won-Ki KIM ; Jong-Ik HWANG
Biomolecules & Therapeutics 2021;29(3):331-341
Liver cancer is a common tumor and currently the second leading cause of cancer-related mortality globally. Liver cancer is highly related to inflammation as more than 90% of liver cancer arises in the context of hepatic inflammation, such as hepatitis B virus and hepatitis C virus infection. Despite significant improvements in the therapeutic modalities for liver cancer, patient prognosis is not satisfactory due to the limited efficacy of current drug therapies in anti-metastatic activity. Therefore, developing new effective anti-cancer agents with anti-metastatic activity is important for the treatment of liver cancer. In this study, SP-8356, a verbenone derivative with anti-inflammatory activity, was investigated for its effect on the growth and migration of liver cancer cells. Our findings demonstrated that SP-8356 inhibits the proliferation of liver cancer cells by inducing apoptosis and suppressing the mobility and invasion ability of liver cancer cells. Functional studies revealed that SP-8356 inhibits the mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways, which are related to cell proliferation and metastasis, resulting in the downregulation of metastasis-related genes. Moreover, using an orthotopic liver cancer model, tumor growth was significantly decreased following treatment with SP-8356. Thus, this study suggests that SP-8356 may be a potential agent for the treatment of liver cancer with multimodal regulation.
3.STP-A11, an oncoprotein of Herpesvirus saimiri augments both NF-kappaB and AP-1 transcription activity through TRAF6.
Sunam JEONG ; Il Rae CHO ; Won Gun AN ; Byung Hak JHUN ; Bok Soo LEE ; Keerang PARK ; Young Hwa CHUNG
Experimental & Molecular Medicine 2007;39(1):56-64
Herpesvirus saimiri (HVS), a member of the gamma-herpesvirus family, encodes an oncoprotein called Saimiri Transforming Protein (STP) which is required for lymphoma induction in non-human primates. However, a detailed mechanism of STP-A11-induced oncogenesis has not been revealed yet. We first report that STP-A11 oncoprotein interacts with TNF-alpha receptor-associated factor (TRAF) 6 in vivo and in vitro. Mutagenesis analysis of the TRAF6-binding motif 10PQENDE15 in STP-A11 reveals that Glu (E)12 residue is critical for binding to TRAF6 and NF-kappaB activation. Interestingly, co-expression of E12A mutant, lack of TRAF6 binding, with cellular Src (Src) results in decreased transcriptional activity of Stat3 and AP-1, a novel target of STP-A11 compared to that of wild type. Furthermore, the presence of STP-A11 enhances the association of TRAF6 with Src and induces the translocation of both TRAF6 and Src to a nonionic detergent-insoluble fraction. Taken together, these studies suggest that STP-A11 oncoprotein up-regulates both NF-kappaB and AP-1 transcription activity through TRAF6, which would ultimately contribute cellular transformation.
*Transcription, Genetic
;
Transcription Factor AP-1/agonists/*metabolism
;
TNF Receptor-Associated Factor 6/*metabolism
;
Solubility
;
STAT3 Transcription Factor/metabolism
;
Proto-Oncogene Proteins pp60(c-src)/metabolism
;
Protein Binding
;
Oncogene Proteins, Viral/*metabolism
;
NF-kappa B/agonists/*metabolism
;
Ions
;
Humans
;
Herpesvirus 2, Saimiriine/*metabolism
;
Detergents
;
Cell Line