1.Clinical Efficacy of Beclomethasone Dipropionate in Korean Patients with Ulcerative Colitis.
Yoon Jee LEE ; Jae Hee CHEON ; Jae Hyun KIM ; SunHo YOO ; Hyun Jung LEE ; Soo Jung PARK ; Sung Pil HONG ; Tae Il KIM ; Won Ho KIM
Yonsei Medical Journal 2017;58(1):144-149
PURPOSE: Our aim was to evaluate the efficacy and safety of oral beclomethasone dipropionate (BDP) in Korean patients with ulcerative colitis (UC). MATERIALS AND METHODS: The medical records of patients with active UC who were treated with BDP were retrospectively reviewed. Partial Mayo Clinic score (pMS) was calculated to determine disease activity. After 4 weeks of therapy, clinical remission, clinical response, and response failure rates were evaluated. Clinical remission was defined as a post-treatment pMS of 0 or 1, clinical response as a decrease of two of three points in pMS and >30% from baseline, and response failure as a lack of clinical response. Also, we considered that clinical remission was included in clinical response. RESULTS: Between July 2013 and April 2015, 95 patients with UC received BDP therapy at our institution (median age, 44 years; range, 12–81 years). After 4 weeks of therapy, clinical remission and clinical response rates were 50.5% and 73.7%, respectively. Mean change of pMS before and after BDP therapy was 2.4. There was no significant side effect reported. In multivariate analysis, disease activity was the only factor associated with a favorable response. Clinical remission rate was significantly higher in the mild disease activity group (66.7%) than that in the moderate or severe disease activity group (41.9%) (p=0.024). CONCLUSION: BDP is efficacious in inducing a clinical response or remission in Korean patients with UC. Patients with mild UC were more likely to be in remission than those with moderate or severe UC after receiving BDP for 4 weeks. BDP exhibited a good safety profile.
Administration, Oral
;
Anti-Inflammatory Agents/*administration & dosage/adverse effects
;
Beclomethasone/*administration & dosage/adverse effects
;
Colitis, Ulcerative/drug therapy
;
Drug-Related Side Effects and Adverse Reactions
;
Female
;
Humans
;
Male
;
Medical Records
;
Remission Induction
;
Republic of Korea
;
Retrospective Studies
;
Safety
;
Treatment Outcome
;
Young Adult
2.Microbubbles used for contrast enhanced ultrasound and theragnosis: a review of principles to applications.
Hohyeon LEE ; Haemin KIM ; Hyounkoo HAN ; Minji LEE ; Sunho LEE ; Hongkeun YOO ; Jin Ho CHANG ; Hyuncheol KIM
Biomedical Engineering Letters 2017;7(2):59-69
Ultrasound was developed several decades ago as a useful imaging modality, and it became the second most popular diagnostic tool due to its non-invasiveness, real-time capabilities, and safety. Additionally, ultrasound has been used as a therapeutic tool with several therapeutic agents and in nanomedicine. Ultrasound imaging is often used to diagnose many types of cancers, including breast, stomach, and thyroid cancers. In addition, ultrasound-mediated therapy is used in cases of joint inflammation, rheumatoid arthritis, and osteoarthritis. Microbubbles, when used as ultrasound contrast agents, can act as echo-enhancers and therapeutic agents, and they can play an essential role in ultrasound imaging and ultrasound-mediated therapy. Recently, various types of ultrasound contrast agents made of lipid, polymer, and protein shells have been used. Air, nitrogen, and perfluorocarbon are usually included in the core of the microbubbles to enhance ultrasound imaging, and therapeutic drugs are conjugated and loaded onto the surface or into the core of the microbubbles, depending on the purpose and properties of the substance. Many research groups have utilized ultrasound contrast agents to enhance the imaging signal in blood vessels or tissues and to overcome the blood–brain barrier or blood-retina barrier. These agents are also used to help treat diseases in various regions or systems of the body, such as the cardiovascular system, or as a cancer treatment. In addition, with the introduction of targeted moiety and multiple functional groups, ultrasound contrast agents are expected to have a potential future in ultrasound imaging and therapy. In this paper, we briefly review the principles of ultrasound and introduce the underlying theory, applications, limitations, and future perspectives of ultrasound contrast agents.
Arthritis, Rheumatoid
;
Blood Vessels
;
Breast
;
Cardiovascular System
;
Contrast Media
;
Inflammation
;
Joints
;
Microbubbles*
;
Nanomedicine
;
Nitrogen
;
Osteoarthritis
;
Polymers
;
Stomach
;
Thyroid Neoplasms
;
Ultrasonography*
3.Organizing an in-class hackathon to correct PDF-to-text conversion errors of Genomics & Informatics 1.0
Sunho KIM ; Royoung KIM ; Ryeo-Gyeong KIM ; Enjin KO ; Han-Su KIM ; Jihye SHIN ; Daeun CHO ; Yurhee JIN ; Soyeon BAE ; Ye Won JO ; San Ah JEONG ; Yena KIM ; Seoyeon AHN ; Bomi JANG ; Jiheyon SEONG ; Yujin LEE ; Si Eun SEO ; Yujin KIM ; Ha-Jeong KIM ; Hyeji KIM ; Hye-Lynn SUNG ; Hyoyoung LHO ; Jaywon KOO ; Jion CHU ; Juwon LIM ; Youngju KIM ; Kyungyeon LEE ; Yuri LIM ; Meongeun KIM ; Seonjeong HWANG ; Shinhye HAN ; Sohyeun BAE ; Sua KIM ; Suhyeon YOO ; Yeonjeong SEO ; Yerim SHIN ; Yonsoo KIM ; You-Jung KO ; Jihee BAEK ; Hyejin HYUN ; Hyemin CHOI ; Ji-Hye OH ; Da-Young KIM ; Hee-Jo NAM ; Hyun-Seok PARK
Genomics & Informatics 2020;18(3):e33-
This paper describes a community effort to improve earlier versions of the full-text corpus of Genomics & Informatics by semi-automatically detecting and correcting PDF-to-text conversion errors and optical character recognition errors during the first hackathon of Genomics & Informatics Annotation Hackathon (GIAH) event. Extracting text from multi-column biomedical documents such as Genomics & Informatics is known to be notoriously difficult. The hackathon was piloted as part of a coding competition of the ELTEC College of Engineering at Ewha Womans University in order to enable researchers and students to create or annotate their own versions of the Genomics & Informatics corpus, to gain and create knowledge about corpus linguistics, and simultaneously to acquire tangible and transferable skills. The proposed projects during the hackathon harness an internal database containing different versions of the corpus and annotations.
4.Organizing an in-class hackathon to correct PDF-to-text conversion errors of Genomics & Informatics 1.0
Sunho KIM ; Royoung KIM ; Ryeo-Gyeong KIM ; Enjin KO ; Han-Su KIM ; Jihye SHIN ; Daeun CHO ; Yurhee JIN ; Soyeon BAE ; Ye Won JO ; San Ah JEONG ; Yena KIM ; Seoyeon AHN ; Bomi JANG ; Jiheyon SEONG ; Yujin LEE ; Si Eun SEO ; Yujin KIM ; Ha-Jeong KIM ; Hyeji KIM ; Hye-Lynn SUNG ; Hyoyoung LHO ; Jaywon KOO ; Jion CHU ; Juwon LIM ; Youngju KIM ; Kyungyeon LEE ; Yuri LIM ; Meongeun KIM ; Seonjeong HWANG ; Shinhye HAN ; Sohyeun BAE ; Sua KIM ; Suhyeon YOO ; Yeonjeong SEO ; Yerim SHIN ; Yonsoo KIM ; You-Jung KO ; Jihee BAEK ; Hyejin HYUN ; Hyemin CHOI ; Ji-Hye OH ; Da-Young KIM ; Hee-Jo NAM ; Hyun-Seok PARK
Genomics & Informatics 2020;18(3):e33-
This paper describes a community effort to improve earlier versions of the full-text corpus of Genomics & Informatics by semi-automatically detecting and correcting PDF-to-text conversion errors and optical character recognition errors during the first hackathon of Genomics & Informatics Annotation Hackathon (GIAH) event. Extracting text from multi-column biomedical documents such as Genomics & Informatics is known to be notoriously difficult. The hackathon was piloted as part of a coding competition of the ELTEC College of Engineering at Ewha Womans University in order to enable researchers and students to create or annotate their own versions of the Genomics & Informatics corpus, to gain and create knowledge about corpus linguistics, and simultaneously to acquire tangible and transferable skills. The proposed projects during the hackathon harness an internal database containing different versions of the corpus and annotations.