1.Comparative Analysis of Exercise-induced Transcriptomic Responses in Human and Mouse Homologous Genes: Divergence and Convergence Based on The GEPREP Database
Qian SUN ; Wei-Chu TAO ; Ru WANG ; Bing-Xiang XU
Progress in Biochemistry and Biophysics 2025;52(6):1617-1630
Exercise, as a non-pharmacological intervention, holds a pivotal role in metabolic regulation, neuroplasticity, and immune homeostasis maintenance. However, human exercise studies are constrained by ethical limitations in tissue sampling, especially for key organs such as muscles and the brain. Meanwhile, rodent models like mice exhibit physiological differences in exercise patterns and metabolic rates from human. Despite these challenges, approximately 70% of human and mouse genes are conserved, providing a molecular basis for cross-species comparisons. This paper leverages the GEPREP database, which integrates human and mouse exercise transcriptomic data from multiple platforms, to conduct a comprehensive cross-species analysis of exercise-induced gene expression patterns. We employ a stringent data standardization process, including the conversion of orthologous genes and the filtering of low-expressing genes, to ensure the accuracy and reliability of the analysis. A mixed-effects model is utilized to assess differential gene expression across multiple cohorts, identifying genes that are significantly upregulated or downregulated in response to exercise. The analysis reveals a complex pattern of gene expression, with a significant number of genes showing conserved responses between humans and mice, particularly in acute aerobic exercise, where genes such as ATF3, PPARGC1A, and ANKRD1 are commonly upregulated. These genes are implicated in muscle stress response, metabolic regulation, and muscle adaptation, highlighting the shared molecular pathways activated by exercise across species. However, the study also uncovers substantial species-specific differences in gene expression, especially in chronic aerobic exercise, where the number of divergently regulated genes increases. These differences suggest that while some fundamental biological processes are conserved, the specific regulatory mechanisms and gene expression patterns can vary significantly between humans and mice. Functional enrichment analysis further reveals that conserved genes are involved in muscle development, inflammation regulation, and energy metabolism, while species-specific genes are associated with ion transport, extracellular matrix (ECM) organization, and muscle contraction, indicating the multifaceted impact of exercise on skeletal muscle function. The findings emphasize the importance of considering species-specific differences when interpreting results from animal models and translating them to human health applications. The study highlights the need for a more nuanced understanding of the molecular underpinnings of exercise-induced adaptations and underscores the value of cross-species comparative analyses in uncovering the evolutionary and functional basis of these responses. Future research should focus on integrating multi-omics data and expanding the analysis to include other tissues to provide a more comprehensive view of the systemic effects of exercise. Additionally, the development of species-specific gene editing models and the validation of key genes in exercise physiology will further enhance our understanding of the evolutionary logic behind exercise interventions. This study not only provides valuable insights into the molecular mechanisms of exercise-induced adaptations but also underscores the necessity of validating findings from animal models in human cohorts to ensure the reliability and applicability of translational research in exercise science. By addressing these aspects, the study aims to bridge the gap between basic research and clinical applications, ultimately contributing to the development of personalized exercise prescriptions and interventions that can effectively promote health and prevent diseases.
2.Clinical correlation study between bone metabolism level and knee osteoarthritis pain.
Yong-Qi SUN ; Ke-Chun GUO ; Ze-Zhong LIU ; Jin-Shuai DUAN ; Bing XU ; Guo-Gang LUO ; Xian-Liang LAI ; Xiao-Feng WANG
China Journal of Orthopaedics and Traumatology 2025;38(5):482-486
OBJECTIVE:
To investigate the variability of bone metabolism levels among different populations and its association with knee osteoarthritis (KOA) pain.
METHODS:
A total of 50 people (control group) who participated in physical examination from January 2023 to June 2023 were selected, including 26 males and 24 females, wtih a mean aged of (52.14±9.04) years old ranging 41 to 65 years old. The other 50 patients with knee osteoarthritis(case group) who attended the outpatient clinic of the Orthopedics and Traumatology Department in the same time period, including 19 males and 31 females, with a mean age of (53.60±7.76) years old ranging 40 to 65 years. The two groups of Western Ontario and McMaster Universities Osteoarthritis Index(WOMAC) and bone metabolism markers, such as 25-hydroxy-cholecalciferol[25(OH)D], β-isomerized typeⅠcollagen C-telopeptide breakdown products (β-CTX), total typeⅠprocollagen N-terminal propeptide (t-PINP), osteocalcin (OC), parathormone (PTH) levels were compared. Pearson correlation analysis was used to compare the correlation between two groups of bone metabolism related markers and WOMAC.
RESULTS:
The WOMAC score of the case group (39.90±2.34) was higher than that of the control group (3.60±0.57), with significant difference (P<0.05). There was no significant difference between the two groups of 25 (OH)D, β-CTX and PTH (P>0.05). The t-PINP and OC of the case group were (62.90±52.40) and (19.88±10.15) ng·ml-1, respectively, and those of the control group were (38.86±10.82) and (14.90±3.62) ng·ml-1, respectively;the t-PINP and OC of the case group were higher than those of the control group, with significant difference (P<0.05). Pearson correlation analysis showed that t-PINP was positively correlated with WOMAC pain score in the case group (r2=0.045, P<0.01).
CONCLUSION
Bone metabolism levels in the serum of patients with knee osteoarthritis are different from those of healthy people, and the difference between OC and t-PINP is the most obvious, and the concentration of t-PINP levels is positively correlated with pain symptoms in patients with KOA. However, the specific mechanism of correlation between the bone metabolism levels of patients with KOA and their pain symptoms needs to be further elucidated by basic experimental research as well as by enlarging the samples.
Humans
;
Female
;
Male
;
Middle Aged
;
Osteoarthritis, Knee/metabolism*
;
Aged
;
Adult
;
Bone and Bones/metabolism*
;
Pain/etiology*
;
Biomarkers/metabolism*
3.PI-RADS v2.1 score combined with PSA density for diagnosis of clinically significant prostate cancer in the PSA grey zone by MRI-TRUS cognitivefusion-guided transperineal targeted prostate biopsy.
Yue LI ; Shan ZHOU ; Jing CHEN ; Fei MAO ; Xiao-Bing NIU ; Li SUN ; Ming XU ; Jin-Tao LIU
National Journal of Andrology 2025;31(1):50-54
OBJECTIVE:
To assess the value of the Prostate Imaging Reporting and Data System version 2.1 (PI-RADS v2.1) score combined with PSA density (PSAD) in the diagnosis of clinically significant prostate cancer (CSPCa) in the PSA grey zone by MRI-TRUS cognitive fusion-guided transperineal targeted prostate biopsy.
METHODS:
This retrospective study included 327 male patients with total PSA (tPSA) levels of 4-10 μg/L undergoing MRI-TRUS cognitive fusion-guided transperineal targeted prostate biopsy in our hospital between January 2021 and December 2023. According to the pathological results, we divided the patients into a CSPCa (n = 44) and a non-CSPCa group (n = 283), collected their clinical and imaging data, and subjected them to statistical analysis.
RESULTS:
The age, tPSA level, PSAD and PI-RADS score were significantly higher, while the free PSA (fPSA) level, f/tPSA ratio and prostate volume remarkably lower in the CSPCa than in the non-CSPCa group (P<0.05). The areas under the curve (AUCs) of PSAD, PI-RADS score and their combination were 0.772, 0.730 and 0.801, with sensitivities of 63.63%, 70.45% and 72.73%, and specificities of 84.10%, 75.62% and 83.75%, respectively (P<0.01). With PSAD 0.2 μg/(ml·cm3) as the best cut-off value and based on the PI-RADS scores, the patients were divided into two groups for analysis. In the patients with PI-RADS scores 2 and 5, the AUCs were 0.534 and 0.643, with sensitivities of 16.67% and 63.64%, and specificities of 85.14% and 64.29%, with no statistically significant differences (P= 0.784, P= 0.228), and in those with PI-RADS scores 3 and 4, the AUCs were 0.794 and 0.843, with sensitivities of 57.14% and 80.00%, and specificities of 87.14% and 81.82%, with statistically significant differences (P= 0.009, P<0.001).
CONCLUSION
PI-RADS v2.1 score combined with PSAD can effectively improve the diagnostic efficiency of CSPCa in the PSA grey zone by MRI-TRUS cognitive fusion-guided transperineal targeted prostate biopsy and serve as a guide for selection of prostate biopsy.
Humans
;
Male
;
Prostatic Neoplasms/diagnostic imaging*
;
Retrospective Studies
;
Prostate-Specific Antigen
;
Magnetic Resonance Imaging
;
Image-Guided Biopsy
;
Prostate/pathology*
;
Aged
;
Middle Aged
4.Clinical risk and monitoring essentials of tonifying Chinese patent medicine
Huan SUN ; Qiaoli ZHAI ; Jie XU ; Bing LOU ; Pijun GONG ; Beiwei XIN
China Pharmacy 2025;36(23):2974-2977
OBJECTIVE To explore the clinical risks and monitoring essentials associated with tonifying Chinese patent medicine. METHODS The varieties of tonifying Chinese patent medicines listed in the National Basic Drug List (2024 edition) were counted. Package inserts were collected using software such as “Dingxiangyuan” and then classified and organized according to criteria such as “drug name”“ingredients”“contraindications”“precautions”“drug interactions”. The names of traditional Chinese medicine (TCM) decoction pieces were standardized in accordance with the Chinese Pharmacopoeia (2020 edition) and other relevant standards; literature was reviewed to compile information on TCM decoction pieces that required caution/were contraindicated in special populations, as well as tonifying Chinese patent medicines and their related clinical applications. Then, a database for tonifying Chinese patent medicines was ultimately established by relying on the hospital’s internal information system, so as to conduct an in-depth exploration of the clinical usage risks and key monitoring points of tonifying Chinese patent medicines. RESULTS A total of 222 tonifying traditional Chinese medicines were evaluated. Contraindications or requirements for cautious use were identified in 91 (40.99%) for hepatic or renal impairment, 9 (4.05%) for hypertension, and 8 (3.60%) for pediatric patients, and 109 (49.10%) were designated as contraindicated or requiring caution for athletes. CONCLUSIONS Although tonifying Chinese patent medicines are indicated for deficiency patterns, their use is accompanied by measurable clinical risk, especially in individuals with hepatic or renal compromise who are prone to adverse reactions.
5.Csde1 Mediates Neurogenesis via Post-transcriptional Regulation of the Cell Cycle.
Xiangbin JIA ; Wenqi XIE ; Bing DU ; Mei HE ; Jia CHEN ; Meilin CHEN ; Ge ZHANG ; Ke WANG ; Wanjing XU ; Yuxin LIAO ; Senwei TAN ; Yongqing LYU ; Bin YU ; Zihang ZHENG ; Xiaoyue SUN ; Yang LIAO ; Zhengmao HU ; Ling YUAN ; Jieqiong TAN ; Kun XIA ; Hui GUO
Neuroscience Bulletin 2025;41(11):1977-1990
Loss-of-function variants in CSDE1 have been strongly linked to neuropsychiatric disorders, yet the precise role of CSDE1 in neurogenesis remains elusive. In this study, we demonstrate that knockout of Csde1 during cortical development in mice results in impaired neural progenitor proliferation, leading to abnormal cortical lamination and embryonic lethality. Transcriptomic analysis revealed that Csde1 upregulates the transcription of genes involved in the cell cycle network. Applying a dual thymidine-labelling approach, we further revealed prolonged cell cycle durations of neuronal progenitors in Csde1-knockout mice, with a notable extension of the G1 phase. Intersection with CLIP-seq data demonstrated that Csde1 binds to the 3' untranslated region (UTR) of mRNA transcripts encoding cell cycle genes. Particularly, we uncovered that Csde1 directly binds to the 3' UTR of mRNA transcripts encoding Cdk6, a pivotal gene in regulating the transition from the G1 to S phases of the cell cycle, thereby maintaining its stability. Collectively, this study elucidates Csde1 as a novel regulator of Cdk6, sheds new light on its critical roles in orchestrating brain development, and underscores how mutations in Csde1 may contribute to the pathogenesis of neuropsychiatric disorders.
Animals
;
Neurogenesis/genetics*
;
Cell Cycle/genetics*
;
Mice, Knockout
;
Mice
;
Neural Stem Cells/metabolism*
;
DNA-Binding Proteins/metabolism*
;
Cyclin-Dependent Kinase 6/genetics*
;
Cell Proliferation
;
3' Untranslated Regions
;
Cerebral Cortex/embryology*
;
RNA-Binding Proteins
;
Mice, Inbred C57BL
6.Expert consensus on the prevention and treatment of enamel demineralization in orthodontic treatment.
Lunguo XIA ; Chenchen ZHOU ; Peng MEI ; Zuolin JIN ; Hong HE ; Lin WANG ; Yuxing BAI ; Lili CHEN ; Weiran LI ; Jun WANG ; Min HU ; Jinlin SONG ; Yang CAO ; Yuehua LIU ; Benxiang HOU ; Xi WEI ; Lina NIU ; Haixia LU ; Wensheng MA ; Peijun WANG ; Guirong ZHANG ; Jie GUO ; Zhihua LI ; Haiyan LU ; Liling REN ; Linyu XU ; Xiuping WU ; Yanqin LU ; Jiangtian HU ; Lin YUE ; Xu ZHANG ; Bing FANG
International Journal of Oral Science 2025;17(1):13-13
Enamel demineralization, the formation of white spot lesions, is a common issue in clinical orthodontic treatment. The appearance of white spot lesions not only affects the texture and health of dental hard tissues but also impacts the health and aesthetics of teeth after orthodontic treatment. The prevention, diagnosis, and treatment of white spot lesions that occur throughout the orthodontic treatment process involve multiple dental specialties. This expert consensus will focus on providing guiding opinions on the management and prevention of white spot lesions during orthodontic treatment, advocating for proactive prevention, early detection, timely treatment, scientific follow-up, and multidisciplinary management of white spot lesions throughout the orthodontic process, thereby maintaining the dental health of patients during orthodontic treatment.
Humans
;
Consensus
;
Dental Caries/etiology*
;
Dental Enamel/pathology*
;
Tooth Demineralization/etiology*
;
Tooth Remineralization
7.Expert consensus on early orthodontic treatment of class III malocclusion.
Xin ZHOU ; Si CHEN ; Chenchen ZHOU ; Zuolin JIN ; Hong HE ; Yuxing BAI ; Weiran LI ; Jun WANG ; Min HU ; Yang CAO ; Yuehua LIU ; Bin YAN ; Jiejun SHI ; Jie GUO ; Zhihua LI ; Wensheng MA ; Yi LIU ; Huang LI ; Yanqin LU ; Liling REN ; Rui ZOU ; Linyu XU ; Jiangtian HU ; Xiuping WU ; Shuxia CUI ; Lulu XU ; Xudong WANG ; Songsong ZHU ; Li HU ; Qingming TANG ; Jinlin SONG ; Bing FANG ; Lili CHEN
International Journal of Oral Science 2025;17(1):20-20
The prevalence of Class III malocclusion varies among different countries and regions. The populations from Southeast Asian countries (Chinese and Malaysian) showed the highest prevalence rate of 15.8%, which can seriously affect oral function, facial appearance, and mental health. As anterior crossbite tends to worsen with growth, early orthodontic treatment can harness growth potential to normalize maxillofacial development or reduce skeletal malformation severity, thereby reducing the difficulty and shortening the treatment cycle of later-stage treatment. This is beneficial for the physical and mental growth of children. Therefore, early orthodontic treatment for Class III malocclusion is particularly important. Determining the optimal timing for early orthodontic treatment requires a comprehensive assessment of clinical manifestations, dental age, and skeletal age, and can lead to better results with less effort. Currently, standardized treatment guidelines for early orthodontic treatment of Class III malocclusion are lacking. This review provides a comprehensive summary of the etiology, clinical manifestations, classification, and early orthodontic techniques for Class III malocclusion, along with systematic discussions on selecting early treatment plans. The purpose of this expert consensus is to standardize clinical practices and improve the treatment outcomes of Class III malocclusion through early orthodontic treatment.
Humans
;
Malocclusion, Angle Class III/classification*
;
Orthodontics, Corrective/methods*
;
Consensus
;
Child
8.Expert consensus on orthodontic treatment of patients with periodontal disease.
Wenjie ZHONG ; Chenchen ZHOU ; Yuanyuan YIN ; Ge FENG ; Zhihe ZHAO ; Yaping PAN ; Yuxing BAI ; Zuolin JIN ; Yan XU ; Bing FANG ; Yi LIU ; Hong HE ; Faming CHEN ; Weiran LI ; Shaohua GE ; Ang LI ; Yi DING ; Lili CHEN ; Fuhua YAN ; Jinlin SONG
International Journal of Oral Science 2025;17(1):27-27
Patients with periodontal disease often require combined periodontal-orthodontic interventions to restore periodontal health, function, and aesthetics, ensuring both patient satisfaction and long-term stability. Managing these patients involving orthodontic tooth movement can be particularly challenging due to compromised periodontal soft and hard tissues, especially in severe cases. Therefore, close collaboration between orthodontists and periodontists for comprehensive diagnosis and sequential treatment, along with diligent patient compliance throughout the entire process, is crucial for achieving favorable treatment outcomes. Moreover, long-term orthodontic retention and periodontal follow-up are essential to sustain treatment success. This expert consensus, informed by the latest clinical research and practical experience, addresses clinical considerations for orthodontic treatment of periodontal patients, delineating indications, objectives, procedures, and principles with the aim of providing clear and practical guidance for clinical practitioners.
Humans
;
Consensus
;
Orthodontics, Corrective/standards*
;
Periodontal Diseases/complications*
;
Tooth Movement Techniques/methods*
;
Practice Guidelines as Topic
9.Expert consensus on management of instrument separation in root canal therapy.
Yi FAN ; Yuan GAO ; Xiangzhu WANG ; Bing FAN ; Zhi CHEN ; Qing YU ; Ming XUE ; Xiaoyan WANG ; Zhengwei HUANG ; Deqin YANG ; Zhengmei LIN ; Yihuai PAN ; Jin ZHAO ; Jinhua YU ; Zhuo CHEN ; Sijing XIE ; He YUAN ; Kehua QUE ; Shuang PAN ; Xiaojing HUANG ; Jun LUO ; Xiuping MENG ; Jin ZHANG ; Yi DU ; Lei ZHANG ; Hong LI ; Wenxia CHEN ; Jiayuan WU ; Xin XU ; Jing ZOU ; Jiyao LI ; Dingming HUANG ; Lei CHENG ; Tiemei WANG ; Benxiang HOU ; Xuedong ZHOU
International Journal of Oral Science 2025;17(1):46-46
Instrument separation is a critical complication during root canal therapy, impacting treatment success and long-term tooth preservation. The etiology of instrument separation is multifactorial, involving the intricate anatomy of the root canal system, instrument-related factors, and instrumentation techniques. Instrument separation can hinder thorough cleaning, shaping, and obturation of the root canal, posing challenges to successful treatment outcomes. Although retrieval of separated instrument is often feasible, it carries risks including perforation, excessive removal of tooth structure and root fractures. Effective management of separated instruments requires a comprehensive understanding of the contributing factors, meticulous preoperative assessment, and precise evaluation of the retrieval difficulty. The application of appropriate retrieval techniques is essential to minimize complications and optimize clinical outcomes. The current manuscript provides a framework for understanding the causes, risk factors, and clinical management principles of instrument separation. By integrating effective strategies, endodontists can enhance decision-making, improve endodontic treatment success and ensure the preservation of natural dentition.
Humans
;
Root Canal Therapy/adverse effects*
;
Consensus
;
Root Canal Preparation/adverse effects*
10.ARID1A IDR targets EWS-FLI1 condensates and finetunes chromatin remodeling.
Jingdong XUE ; Siang LV ; Ming YU ; Yixuan PAN ; Ningzhe LI ; Xiang XU ; Qi ZHANG ; Mengyuan PENG ; Fang LIU ; Xuxu SUN ; Yimin LAO ; Yanhua YAO ; Juan SONG ; Jun WU ; Bing LI
Protein & Cell 2025;16(1):64-71

Result Analysis
Print
Save
E-mail