1.Xuefu Zhuyutang in Malignant Tumor Disease: A Review
Jiaqi JI ; Xiaoqing HU ; Yihan ZHAO ; Xuhang SUN ; Dandan WEI ; Junwen PEI ; Shiqing JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):321-330
Cancer has become a significant global public health issue, severely impacting public health and societal development. Despite advances in tumor treatment methods in recent years and a gradual decline in cancer mortality rates, drug-related adverse reactions and drug resistance remain substantial challenges. Traditional Chinese medicine (TCM) has demonstrated significant clinical efficacy in cancer treatment and small side effects, making it widely applied in the field of oncology. Xuefu Zhuyutang, derived from Yilin Gaicuo, is known for its abilities to invigorate blood circulation, dispel blood stasis, promote Qi flow, and alleviate pain. It was specifically formulated by the esteemed WANG Qingren of the Qing dynasty for the "blood stasis syndrome in the blood mansion" and is commonly used to treat Qi stagnation and blood stasis syndrome. Clinical studies have shown that Xuefu Zhuyutang, when combined with conventional Western medications, produces significant effects in the treatment of malignant tumors such as liver cancer, lung cancer, and cervical cancer. It substantially reduces the incidence of adverse reactions following Western treatments, including radiation esophagitis, radiation encephalopathy, radiation-induced oral mucositis, and edema. Additionally, it alleviates cancer-related pain and fever, blood hypercoagulability, and associated complications such as depression and anxiety, and also mitigates chemotherapy-induced side effects like hand-foot syndrome. Basic research has demonstrated its potential anti-tumor mechanisms, including the inhibition of Wnt/β-catenin signaling pathway activation, suppression of mitogen-activated protein kinase (MAPK) pathway activation, and anti-tumor angiogenesis. Pharmacological studies have revealed that its active components inhibit tumor cell proliferation and migration, induce tumor cell apoptosis, suppress tumor angiogenesis, enhance the cytotoxicity of natural killer cells against tumors, improve the tumor microenvironment, and regulate immune function. This paper reviewed the latest research progress on Xuefu Zhuyutang in the treatment of malignant tumors from four aspects: theoretical exploration, clinical studies, mechanisms of action, and pharmacological basis, aiming to provide insights and methods for the clinical diagnosis and treatment of malignant tumors.
2.Xuefu Zhuyutang in Malignant Tumor Disease: A Review
Jiaqi JI ; Xiaoqing HU ; Yihan ZHAO ; Xuhang SUN ; Dandan WEI ; Junwen PEI ; Shiqing JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):321-330
Cancer has become a significant global public health issue, severely impacting public health and societal development. Despite advances in tumor treatment methods in recent years and a gradual decline in cancer mortality rates, drug-related adverse reactions and drug resistance remain substantial challenges. Traditional Chinese medicine (TCM) has demonstrated significant clinical efficacy in cancer treatment and small side effects, making it widely applied in the field of oncology. Xuefu Zhuyutang, derived from Yilin Gaicuo, is known for its abilities to invigorate blood circulation, dispel blood stasis, promote Qi flow, and alleviate pain. It was specifically formulated by the esteemed WANG Qingren of the Qing dynasty for the "blood stasis syndrome in the blood mansion" and is commonly used to treat Qi stagnation and blood stasis syndrome. Clinical studies have shown that Xuefu Zhuyutang, when combined with conventional Western medications, produces significant effects in the treatment of malignant tumors such as liver cancer, lung cancer, and cervical cancer. It substantially reduces the incidence of adverse reactions following Western treatments, including radiation esophagitis, radiation encephalopathy, radiation-induced oral mucositis, and edema. Additionally, it alleviates cancer-related pain and fever, blood hypercoagulability, and associated complications such as depression and anxiety, and also mitigates chemotherapy-induced side effects like hand-foot syndrome. Basic research has demonstrated its potential anti-tumor mechanisms, including the inhibition of Wnt/β-catenin signaling pathway activation, suppression of mitogen-activated protein kinase (MAPK) pathway activation, and anti-tumor angiogenesis. Pharmacological studies have revealed that its active components inhibit tumor cell proliferation and migration, induce tumor cell apoptosis, suppress tumor angiogenesis, enhance the cytotoxicity of natural killer cells against tumors, improve the tumor microenvironment, and regulate immune function. This paper reviewed the latest research progress on Xuefu Zhuyutang in the treatment of malignant tumors from four aspects: theoretical exploration, clinical studies, mechanisms of action, and pharmacological basis, aiming to provide insights and methods for the clinical diagnosis and treatment of malignant tumors.
3.Effect of Qingfei Shenshi Decoction (清肺渗湿汤) Combined with Western Medicine on Clinical Effectiveness and Immune Function for Patients with Bronchial Asthma of Heat Wheezing Syndrome
Ying SUN ; Haibo HU ; Na LIU ; Fengchan WANG ; Jinbao ZONG ; Ping HAN ; Peng LI ; Guojing ZHAO ; Haoran WANG ; Xuechao LU
Journal of Traditional Chinese Medicine 2026;67(1):38-44
ObjectiveTo observe the clinical effectiveness and safety of Qingfei Shenshi Decoction (清肺渗湿汤) combined with western medicine for patients with bronchial asthma of heat wheezing syndrome, and to explore its potential mechanism of action. MethodsEighty-six participants with bronchial asthma of heat wheezing syndrome were randomly divided into treatment group and control group, each group with 43 participants. The control group received conventional western medicine, and the treatment group was additionally administered Qingfei Shenshi Decoction orally on the basis of the control group, 1 dose per day. Both groups were treated for 14 days. The primary outcome measure was clinical effectiveness; secondary outcome measures included traditional Chinese medicine (TCM) syndrome score, asthma control test (ACT) score, pulmonary function indices such as forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF), serum inflammatory factor levels including interleukin-4 (IL-4), tumour necrosis factor-α (TNF-α), and high-sensitivity C-reactive protein (hs-CRP), and immune function indices including CD3+, CD4+, CD8+, CD4+/CD8+. All outcome measures were evaluated before and after treatment. Vital signs were monitored, and electrocardiography, blood routine, urine routine, liver function, and renal function tests were performed before and after treatment. Adverse events and reactions during the study were recorded. ResultsA total of 80 patients completed the trial with 40 in each group. The total clinical effective rate of the treatment group was 97.5% (39/40), which was significantly higher than that of the control group (85.0%, 34/40, P<0.05). After treatment, both groups showed decreased TCM syndrome scores, IL-4, TNF-α, hs-CRP, and CD8+ levels, as well as increased ACT scores, CD3+, CD4+, CD4+/CD8+, FEV1, FVC, and PEF levels (P<0.05 or P<0.01). Moreover, the improvements in these indices were more significant in the treatment group than in the control group (P<0.05 or P<0.01). No significant abnormalities in safety indicators were observed in either group, and no adverse events or reactions occurred. ConclusionQingfei Shenshi Decoction combined with conventional western medicine for patients with bronchial asthma of heat wheezing syndrome can effectively improve the clinical symptoms, pulmonary function, and clinical effectiveness, with good safety. Its mechanism may be related to reducing inflammatory factor levels and regulating T lymphocyte subsets to improve immune function.
4.Research progress on antibody-drug conjugates in the treatment of triple-negative breast cancer
Danna LIU ; Shuangshuang SONG ; Lu CHEN ; Yongqiang SUN ; Bo SUN ; Hanli ZHOU ; Xiaoli ZHAO ; Tiandong KONG
China Pharmacy 2026;37(1):124-129
Antibody-drug conjugates (ADCs) are a novel class of anti-tumor agents composed of a targeted monoclonal antibody, a cytotoxic drug, and a linker connecting the two. They combine the high specificity of antibodies with the potent cytotoxicity of chemotherapeutic agents. Triple-negative breast cancer (TNBC) is characterized by high aggressiveness, elevated risks of recurrence and metastasis, and poor prognosis, largely due to the lack of effective therapeutic targets. This review summarizes the research progress of ADCs in the treatment of TNBC. It has been found that ADCs targeting human epidermal growth factor receptor 2 (such as trastuzumab deruxtecan), trophoblast cell surface antigen 2 (such as sacituzumab govitecan and datopotamab deruxtecan), zinc transporter LIV-1 (such as ladiratuzumab vedotin), HER-3 (such as patritumab deruxtecan), epidermal growth factor receptor (such as AVID100), and glycoprotein non-metastatic melanoma protein B (such as glembatumumab vedotin) have all demonstrated promising therapeutic effects against TNBC. Despite challenges including acquired resistance and treatment-related toxicities, ADCs are undoubtedly reshaping the therapeutic landscape for TNBC and are expected to occupy a more central position in TNBC treatment in the future.
5.Construction and in vitro osteogenic activity study of magnesium-strontium co-doped hydroxyapatite mineralized collagen
WANG Meng ; SUN Yifei ; CAO Xiaoqing ; WEI Yiyuan ; CHEN Lei ; ZHANG Zhenglong ; MU Zhao ; ZHU Juanfang ; NIU Lina
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(1):15-28
Objective:
To investigate the efficacy of magnesium-strontium co-doped hydroxyapatite mineralized collagen (MSHA/Col) in improving the bone repair microenvironment and enhancing bone regeneration capacity, providing a strategy to address the insufficient biomimetic composition and limited bioactivity of traditional hydroxyapatite mineralized collagen (HA/Col) scaffolds.
Methods:
A high-molecular-weight polyacrylic acid-stabilized amorphous calcium magnesium strontium phosphate precursor (HPAA/ACMSP) was prepared. Its morphology and elemental distribution were characterized by high-resolution transmission electron microscopy (TEM) and energy-dispersive spectroscopy. Recombinant collagen sponge blocks were immersed in the HPAA/ACMSP mineralization solution. Magnesium-strontium co-doped hydroxyapatite was induced to deposit within collagen fibers (experimental group: MSHA/Col; control group: HA/Col). The morphological characteristics of MSHA/Col were observed using scanning electron microscopy (SEM). Its crystal structure and chemical composition were analyzed by X-ray diffraction and Fourier transform infrared spectroscopy, respectively. The mineral phase content was evaluated by thermogravimetric analysis. The scaffold's porosity, ion release, and in vitro degradation performance were also determined. For cytological experiments, CCK-8 assay, live/dead cell staining, alkaline phosphatase staining, alizarin red S staining, RT-qPCR, and western blotting were used to evaluate the effects of the MSHA/Col scaffold on the proliferation, viability, early osteogenic differentiation activity, late mineralization capacity, and gene and protein expression levels of key osteogenic markers [runt-related transcription factor 2 (Runx2), collagen type Ⅰ (Col-Ⅰ), osteopontin (Opn), and osteocalcin (Ocn)] in mouse embryonic osteoblast precursor cells (MC3T3-E1).
Results:
HPAA/ACMSP appeared as amorphous spherical nanoparticles under TEM, with energy spectrum analysis showing uniform distribution of carbon, oxygen, calcium, phosphorus, magnesium, and strontium elements. SEM results of MSHA/Col indicated successful complete intrafibrillar mineralization. Elemental analysis showed the mass fractions of magnesium and strontium were 0.72% (matching the magnesium content in natural bone) and 2.89%, respectively. X-ray diffraction revealed characteristic peaks of hydroxyapatite crystals (25.86°, 31°-34°). Infrared spectroscopy results showed characteristic absorption peaks for both collagen and hydroxyapatite. Thermogravimetric analysis indicated a mineral phase content of 78.29% in the material. The scaffold porosity was 91.6% ± 1.1%, close to the level of natural bone tissue. Ion release curves demonstrated sustained release behavior for both magnesium and strontium ions. The in vitro degradation rate matched the ingrowth rate of new bone tissue. Cytological experiments showed that MSHA/Col significantly promoted MC3T3-E1 cell proliferation (130% increase in activity at 72 h, P < 0.001). MSHA/Col exhibited excellent efficacy in promoting osteogenic differentiation, significantly upregulating the expression of osteogenesis-related genes and proteins (Runx2, Col-Ⅰ, Opn, Ocn) (P < 0.01).
Conclusion
The MSHA/Col scaffold achieves dual biomimicry of natural bone in both composition and structure, and effectively promotes osteogenic differentiation at the genetic and protein levels, breaking through the functional limitations of pure hydroxyapatite mineralized collagen. This provides a new strategy for the development of functional bone repair materials
6.Fabrication and evaluation of an inositol hexaphosphate-zinc hydrogel with dual capabilities of self-mineralization and osteoinduction
LIU Mingyi ; MIAO Xiaoyu ; CAI Yunfan ; WANG Yan ; SUN Xiaotang ; KANG Jingrui ; ZHAO Yao ; NIU Lina
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(1):29-40
Objective:
To fabricate a hydrogel loaded with inositol hexaphosphate-zinc and preliminarily evaluate its performance in self-mineralization and osteoinduction, thereby providing a theoretical basis for the development of bone regeneration materials.
Methods:
The hydrogel framework (designated DF0) was formed by copolymerizing methacryloyloxyethyltrimethylammonium chloride and four-armed poly(ethylene glycol) acrylate, followed by sequentially loading inositol hexaphosphate anions via electrostatic interaction and zinc ions via chelation. The hydrogel loaded only with inositol hexaphosphate anions was named DF1, while the co-loaded hydrogel was named DF2. The self-mineralization efficacy of the DF0 , DF1 and DF2 hydrogels was characterized using scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The biocompatibility was assessed via live/dead cell staining and a CCK-8 assay. The osteoinductive capacity of the DF0 , DF1 and DF2 hydrogels on MC3T3-E1 cells was assessed via alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining. In the aforementioned cell experiments, cells cultured in standard medium served as the control group
Results:
The DF0, DF1, and DF2 hydrogels were successfully synthesized. Notably, DF1 and DF2 exhibited distinct self-mineralization within 6 days. Results from TEM, EDS, and SAED confirmed that the mineralization products were amorphous calcium phosphate in group DF1, and amorphous calciumzinc phosphate in group DF2. Biocompatibility tests revealed that none of the hydrogels (DF0, DF1, and DF2) adversely affected cell viability or proliferation. In osteogenic induction experiments, both ALP and ARS staining were intensified in the DF1 and DF2 groups, with the most profound staining observed in the DF2 group.
Conclusion
The developed inositol hexaphosphate-zinc hydrogel (DF2) demonstrates the dual capacity to generate calcium-phosphate compounds through self-mineralization while exhibiting excellent osteoinductive properties. This biocompatible, dual-promoting osteogenic hydrogel presents a novel strategy for bone regeneration.
7.Identification of Chemical Constituents of Painong Powder and Constituents Absorbed into Blood by UHPLC-Q-Orbitrap-MS
Han SUN ; Hongsu ZHAO ; Zihua XUAN ; Jinwei QIAO ; Fangfang ZHANG ; Manqin YANG ; Shuangying GUI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):256-263
ObjectiveTo study the chemical constituents of Painong powder and the constituents absorbed into blood after oral administration to rats by ultra performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry (UPLC-Q-Orbitrap-MS). MethodsUPLC-Q-Orbitrap-MS was employed for mass spectrometry data acquisition. The chemical constituents of Painong Powder and the constituents absorbed into blood were characterized and identified via Xcalibur 4.2 and Compound Discoverer v3.3.1 (CD) based on retention time, accurate molecular weights, secondary fragmentation ions, and comparison with reference standards and literature reports. ResultsA total of 176 chemical compounds, including 56 flavonoids, 42 triterpenoid saponins, 23 monoterpenes, 7 coumarins, 5 tannins, and other 43 compounds were identified from Painong powder. 49 components were identified in the rat plasma after oral administration of Painong powder, including 33 prototype constituents and 16 metabolites. The major metabolic pathways included hydrolysis in phase Ⅰ metabolic reactions, as well as methylation, sulfation, and glucuronidation in phase Ⅱ metabolic reaction. ConclusionThe method comprehensively identified the chemical constituents of Painong powder both in vitro and in vivo, and may provide a reference for the study of quality control and clinical applications.
8.Treatment Principles and Paradigm of Diabetic Microvascular Complications Responding Specifically to Traditional Chinese Medicine
Anzhu WANG ; Xing HANG ; Lili ZHANG ; Xiaorong ZHU ; Dantao PENG ; Ying FAN ; Min ZHANG ; Wenliang LYU ; Guoliang ZHANG ; Xiai WU ; Jia MI ; Jiaxing TIAN ; Wei ZHANG ; Han WANG ; Yuan XU ; .LI PINGPING ; Zhenyu WANG ; Ying ZHANG ; Dongmei SUN ; Yi HE ; Mei MO ; Xiaoxiao ZHANG ; Linhua ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):272-279
To explore the advantages of traditional Chinese medicine (TCM) and integrative TCM-Western medicine approaches in the treatment of diabetic microvascular complications (DMC), refine key pathophysiological insights and treatment principles, and promote academic innovation and strategic research planning in the prevention and treatment of DMC. The 38th session of the Expert Salon on Diseases Responding Specifically to Traditional Chinese Medicine, hosted by the China Association of Chinese Medicine, was held in Beijing, 2024. Experts in TCM, Western medicine, and interdisciplinary fields convened to conduct a systematic discussion on the pathogenesis, diagnostic and treatment challenges, and mechanism research related to DMC, ultimately forming a consensus on key directions. Four major research recommendations were proposed. The first is addressing clinical bottlenecks in the prevention and control of DMC by optimizing TCM-based evidence evaluation systems. The second is refining TCM core pathogenesis across DMC stages and establishing corresponding "disease-pattern-time" framework. The third is innovating mechanism research strategies to facilitate a shift from holistic regulation to targeted intervention in TCM. The fourth is advancing interdisciplinary collaboration to enhance the role of TCM in new drug development, research prioritization, and guideline formulation. TCM and integrative approaches offer distinct advantages in managing DMC. With a focus on the diseases responding specifically to TCM, strengthening evidence-based support and mechanism interpretation and promoting the integration of clinical care and research innovation will provide strong momentum for the modernization of TCM and the advancement of national health strategies.
9.Establishment and Evaluation of New Mouse Model of Rheumatoid Arthritis Combined with Interstitial Lung Disease
Liting XU ; Qingyu ZHAO ; Chao YANG ; Lianhua HE ; Congcong SUN ; Shuangrong GAO ; Lili WANG ; Chunfang LIU ; Na LIN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):81-90
ObjectiveTo establish a mouse model of rheumatoid arthritis with interstitial lung disease (RA-ILD) in DBA/1 mice using Porphyromonas gingivalis (Pg) infection combined with collagen-induced arthritis (CIA), and to comprehensively evaluate pathological characteristics in joints, lungs, and serum. MethodsForty DBA/1 mice were randomly divided into four groups, i.e., Control, Pg infection (Pg), CIA, and Pg infection combined with CIA (Pg+CIA), with 10 mice in each group. Arthritis clinical symptoms were evaluated by recording arthritis incidence and clinical scores. Micro-CT scanning was used to assess knee joint pathology. Histopathological changes and collagen deposition in knee joints and lung tissues were analyzed using hematoxylin-eosin (HE) and Masson staining. Immunohistochemistry was performed to detect protein expression of α-smooth muscle actin (α-SMA), typeⅠ collagen (ColⅠ), and fibronectin (FN) in lung tissues. Real-time quantitative polymerase chain reaction(Real-time PCR)was used to measure mRNA expression levels of α-SMA, ColⅠ, FN, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β in lung tissues. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum levels of Pg, cyclic citrullinated peptide (CCP), and immunoglobulin G (IgG). ResultsJoint lesions: The CIA and Pg+CIA groups showed 100% arthritis incidence, with evident joint redness, swelling, and deformity. The number of affected limbs was 27 and 28, and clinical scores were 68 and 70, respectively. No obvious clinical symptoms were observed in the Pg group. Histopathological and imaging analyses showed severe joint lesions in the CIA and Pg+CIA groups, with significantly increased histopathological scores, bone mineral density, bone volume fraction, trabecular thickness, and trabecular number compared to the Control group (P<0.01). No obvious joint pathology was observed in the Pg group. Lung lesions: The Pg+CIA group exhibited marked alveolar inflammation, interstitial inflammatory cell infiltration, and alveolar wall thickening, with pronounced blue staining of collagen fibers. Histopathological scores and collagen area ratios were significantly higher than those of the Control, Pg, and CIA groups (P<0.05). Lung protein and mRNA expression levels of α-SMA, ColⅠ, and FN were markedly increased, and mRNA levels of IL-6, TNF-α, and IL-1β were significantly elevated compared to the Control group (P<0.05). Serology: The Pg+CIA group showed significantly higher levels of CCP, Pg, and IgG compared with the Control, Pg, and CIA groups (P<0.05). ConclusionDBA/1 mice subjected to Pg infection combined with CIA exhibited pronounced symptoms and pathological features of RA-ILD, along with elevated serum anti-CCP antibody levels. This model represents a novel RA-ILD mouse model, providing a valuable experimental tool for investigating RA-ILD pathogenesis and developing new therapeutics, and serves as a basis for establishing anti-cyclic citrullinated peptide antibody (ACPA)-positive RA-ILD animal models.
10.Effect and Mechanisms of Ermiao Formula Analogs and Their Active Components in Treating Dampness-heat Type Gouty Arthritis: A Review
Xueping ZHAO ; Xinya ZHANG ; Le YANG ; Ye SUN ; Xin SUN ; Hui SUN ; Qimeng ZHANG ; Guangli YAN ; Xijun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):276-285
Gouty arthritis (GA) is caused by monosodium urate(MSU) deposition due to purine metabolism disorders. In traditional Chinese medicine (TCM), it falls under the category of "dampness-heat Bi syndrome", with core pathogenesis involving dampness-heat accumulation and dysfunction of the spleen and kidney. The dampness-heat syndrome is the most common and the primary syndrome type during acute attacks. In Western medicine, GA is associated with purine metabolism imbalance and inflammation triggered by MSU crystals, involving pathways such as NOD-like receptor protein 3 (NLRP3) inflammasome activation and Toll-like receptor 2/4 (TLR2/4) signaling. Clinically, colchicine and similar drugs are commonly used to treat GA, although long-term use carries potential side effects. Ermiao Formula analogs originate from ancient prescriptions, including Ermiao, Sanmiao, and Simiao compound formulas. All contain Atractylodis Rhizoma and Phellodendri Chinensis Cortex. Ermiaowan follow a 1∶1 formulation ratio. Sanmiaowan add Cyathulae Radix. Simiaowan further incorporate Coicis Semen. These formulas are rich in active ingredients, including alkaloids, terpenoids, flavonoids, and sterols, and treat GA through multi-component, multi-pathway, and multi-target mechanisms. Ermiaosan primarily exerts anti-inflammatory effects by inhibiting pathways such as TLR4/nuclear factor kappa-B (NF-κB) or regulating immune responses to reduce the release of inflammatory mediators, while also suppressing xanthine dehydrogenase (XDH) and xanthine oxidase (XO) activity to decrease uric acid production. Sanmiaowan enhance uric acid-lowering and anti-inflammatory effects through the guiding herb Cyathulae Radix, while also protecting cartilage from damage. Simiaowan utilizes Coicis Semen to regulate intestinal flora, alleviate dampness-heat symptoms, and exert multi-pathway anti-inflammatory and uric acid-lowering effects. The active ingredients contribute differently to uric acid metabolism regulation, anti-inflammation, antioxidant activity, and bone repair, resulting in varying therapeutic effects due to differences in formula composition. In summary, formulas derived from Ermiaosan demonstrate significant efficacy in treating dampness-heat type GA. This review summarizes their research progress and mechanisms, providing a reference for clinical application, new drug development, and further studies.


Result Analysis
Print
Save
E-mail