1.Hypericin, a Naphthodianthrone Derivative, Prevents Methylglyoxal-Induced Human Endothelial Cell Dysfunction.
Biomolecules & Therapeutics 2017;25(2):158-164
Methylglyoxal (MGO) is a highly reactive metabolite of glucose which is known to cause damage and induce apoptosis in endothelial cells. Endothelial cell damage is implicated in the progression of diabetes-associated complications and atherosclerosis. Hypericin, a naphthodianthrone isolated from Hypericum perforatum L. (St. John’s Wort), is a potent and selective inhibitor of protein kinase C and is reported to reduce neuropathic pain. In this work, we investigated the protective effect of hypericin on MGO-induced apoptosis in human umbilical vein endothelial cells (HUVECs). Hypericin showed significant anti-apoptotic activity in MGO-treated HUVECs. Pretreatment with hypericin significantly inhibited MGO-induced changes in cell morphology, cell death, and production of intracellular reactive oxygen species. Hypericin prevented MGO-induced apoptosis in HUVECs by increasing Bcl-2 expression and decreasing Bax expression. MGO was found to activate mitogen-activated protein kinases (MAPKs). Pretreatment with hypericin strongly inhibited the activation of MAPKs, including P38, JNK, and ERK1/2. Interestingly, hypericin also inhibited the formation of AGEs. These findings suggest that hypericin may be an effective regulator of MGO-induced apoptosis. In conclusion, hypericin downregulated the formation of AGEs and ameliorated MGO-induced dysfunction in human endothelial cells.
Apoptosis
;
Atherosclerosis
;
Cell Death
;
Endothelial Cells*
;
Glucose
;
Glycosylation End Products, Advanced
;
Human Umbilical Vein Endothelial Cells
;
Humans*
;
Hypericum
;
Mitogen-Activated Protein Kinases
;
Neuralgia
;
Protein Kinase C
;
Pyruvaldehyde
;
Reactive Oxygen Species
2.Anti-Fibrotic Effects of DL-Glyceraldehyde in Hepatic Stellate Cells via Activation of ERK-JNK-Caspase-3 Signaling Axis
Md. SAMSUZZAMAN ; Sun Yeou KIM
Biomolecules & Therapeutics 2023;31(4):425-433
During liver injury, hepatic stellate cells can differentiate into myofibroblast-like structures, which are more susceptible to proliferation, migration, and extracellular matrix generation, leading to liver fibrosis. Anaerobic glycolysis is associated with activated stellate cells and glyceraldehyde (GA) is an inhibitor of glucose metabolism. Therefore, this study aimed to investigate the anti-fibrotic effects of GA in human stellate LX-2 cells. In this study, we used cell viability, morphological analysis, fluorescence-activated cell sorting (FACS), western blotting, and qRT-PCR techniques to elucidate the molecular mechanism underlying the anti-fibrotic effects of GA in LX-2 cells. The results showed that GA significantly reduced cell density and inhibited cell proliferation and lactate levels in LX-2 cells but not in Hep-G2 cells. We found that GA prominently increased the activation of caspase-3/9 for apoptosis induction, and a pan-caspase inhibitor, Z-VAD-fmk, attenuated the cell death and apoptosis effects of GA, suggesting caspasedependent cell death. Moreover, GA strongly elevated reactive oxygen species (ROS) production and notably increased the phosphorylation of ERK and JNK. Interestingly, it dramatically reduced α-SMA and collagen type I protein and mRNA expression levels in LX-2 cells. Thus, inhibition of ERK and JNK activation significantly rescued GA-induced cell growth suppression and apoptosis in LX-2 cells. Collectively, the current study provides important information demonstrating the anti-fibrotic effects of GA, a glycolytic metabolite, and demonstrates the therapeutic potency of metabolic factors in liver fibrosis.
3.A New Neolignan Derivative, Balanophonin Isolated from Firmiana simplex Delays the Progress of Neuronal Cell Death by Inhibiting Microglial Activation.
Soo Young LIM ; Lalita SUBEDI ; Dongyun SHIN ; Chung Sub KIM ; Kang Ro LEE ; Sun Yeou KIM
Biomolecules & Therapeutics 2017;25(5):519-527
Excessive activation of microglia causes the continuous production of neurotoxic mediators, which further causes neuron degeneration. Therefore, inhibition of microglial activation is a possible target for the treatment of neurodegenerative disorders. Balanophonin, a natural neolignoid from Firmiana simplex, has been reported to have anti-inflammatory and anti-cancer effects. In this study, we aimed to evaluate the anti-neuroinflammatory effects and mechanism of balanophonin in lipopolysaccharide (LPS)-stimulated BV2 microglia cells. BV2 microglia cells were stimulated with LPS in the presence or absence of balanophonin. The results indicated that balanophonin reduced not only the LPS-mediated TLR4 activation but also the production of inflammatory mediators, such as nitric oxide (NO), prostaglandin E2 (PGE2), Interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), in BV2 cells. Balanophonin also inhibited LPS-induced inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX2) protein expression and mitogen activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 MAPK. Interestingly, it also inhibited neuronal cell death resulting from LPS-activated microglia by regulating cleaved caspase-3 and poly ADP ribose polymerase (PARP) cleavage in N2a cells. In conclusion, our data indicated that balanophonin may delay the progression of neuronal cell death by inhibiting microglial activation.
Apoptosis
;
Caspase 3
;
Cell Death*
;
Cyclooxygenase 2
;
Dinoprostone
;
JNK Mitogen-Activated Protein Kinases
;
Microglia
;
Mitogen-Activated Protein Kinases
;
Necrosis
;
Nerve Degeneration
;
Neurodegenerative Diseases
;
Neurons*
;
Neuroprotection
;
Nitric Oxide
;
Nitric Oxide Synthase Type II
;
p38 Mitogen-Activated Protein Kinases
;
Phosphotransferases
;
Poly(ADP-ribose) Polymerases
4.Direct Analysis in Real Time Mass Spectrometry (DART-MS) Analysis of Skin Metabolome Changes in the Ultraviolet B-Induced Mice.
Hye Min PARK ; Hye Jin KIM ; Young Pyo JANG ; Sun Yeou KIM
Biomolecules & Therapeutics 2013;21(6):470-475
Ultraviolet (UV) radiation is a major environmental factor that leads to acute and chronic reactions in the human skin. UV exposure induces wrinkle formation, DNA damage, and generation of reactive oxygen species (ROS). Most mechanistic studies of skin physiology and pharmacology related with UV-irradiated skin have focused on proteins and their related gene expression or single- targeted small molecules. The present study identified and analyzed the alteration of skin metabolites following UVB irradiation and topical retinyl palmitate (RP, 5%) treatment in hairless mice using direct analysis in real time (DART) time-of-flight mass spectrometry (TOF-MS) with multivariate analysis. Under the negative ion mode, the DART ion source successfully ionized various fatty acids including palmitoleic and linolenic acid. From DART-TOF-MS fingerprints measured in positive mode, the prominent dehydrated ion peak (m/z: 369, M+H-H2O) of cholesterol was characterized in all three groups. In positive mode, the discrimination among three groups was much clearer than that in negative mode by using multivariate analysis of orthogonal partial-least squares-discriminant analysis (OPLS-DA). DART-TOF-MS can ionize various small organic molecules in living tissues and is an efficient alternative analytical tool for acquiring full chemical fingerprints from living tissues without requiring sample preparation. DART-MS measurement of skin tissue with multivariate analysis proved to be a powerful method to discriminate between experimental groups and to find biomarkers for various experiment models in skin dermatological research.
alpha-Linolenic Acid
;
Animals
;
Biomarkers
;
Cholesterol
;
Dermatoglyphics
;
Discrimination (Psychology)
;
DNA Damage
;
Fatty Acids
;
Gene Expression
;
Humans
;
Mass Spectrometry*
;
Metabolome*
;
Mice*
;
Mice, Hairless
;
Multivariate Analysis
;
Pharmacology
;
Reactive Oxygen Species
;
Skin Physiological Phenomena
;
Skin*
5.Aerobic Exercise Ameliorates Muscle Atrophy Induced by Methylglyoxal via Increasing Gastrocnemius and Extensor Digitorum Longus Muscle Sensitivity
Seong-Min HONG ; Eun Yoo LEE ; Jinho PARK ; Jiyoun KIM ; Sun Yeou KIM
Biomolecules & Therapeutics 2023;31(5):573-582
Muscle atrophy is characterized by the loss of muscle function. Many efforts are being made to prevent muscle atrophy, and exercise is an important alternative. Methylglyoxal is a well-known causative agent of metabolic diseases and diabetic complications.This study aimed to evaluate whether methylglyoxal induces muscle atrophy and to evaluate the ameliorative effect of moderateintensity aerobic exercise in a methylglyoxal-induced muscle atrophy animal model. Each mouse was randomly divided into three groups: control, methylglyoxal-treated, and methylglyoxal-treated within aerobic exercise. In the exercise group, each mouse was trained on a treadmill for 2 weeks. On the last day, all groups were evaluated for several atrophic behaviors and skeletal muscles, including the soleus, plantaris, gastrocnemius, and extensor digitorum longus were analyzed. In the exercise group, muscle mass was restored, causing in attenuation of muscle atrophy. The gastrocnemius and extensor digitorum longus muscles showed improved fiber cross-sectional area and reduced myofibrils. Further, they produced regulated atrophy-related proteins (i.e., muscle atrophy F-box, muscle RING-finger protein-1, and myosin heavy chain), indicating that aerobic exercise stimulated their muscle sensitivity to reverse skeletal muscle atrophy. In conclusion, shortness of the gastrocnemius caused by methylglyoxal may induce the dynamic imbalance of skeletal muscle atrophy, thus methylglyoxal may be a key target for treating skeletal muscle a
6.Chemical Constituents of Impatiens balsamina Stems and Their Biological Activities
Dong Hyun KIM ; Tae Hyun LEE ; Lalita SUBEDI ; Sun Yeou KIM ; Kang Ro LEE
Natural Product Sciences 2019;25(2):130-135
The purification of the MeOH extract from Impatiens balsamina by repeated column chromatography led to the isolation of one new tetrahydronaphthalene (1), together with eleven known compounds (2 – 12). The structure of the new compound (1) was determined by spectral data analysis (1H and 13C-NMR, 1H-1H COSY, HSQC, HMBC, NOESY, and HR-ESI-MS). Isolated compounds (1 – 12) were evaluated for their inhibitory effects on NO production in LPS-activated murine microglial BV-2 cells and their effects on NGF secretion from C6 glioma cells. Compounds 3, 7, and 10 reduced NO levels in LPS-activated murine microglial cells with IC50 values of 26.89, 25.59, and 44.21 µM, respectively. Compounds 1, 5, and 9 upregulated NGF secretion to 153.09 ± 4.66, 156.88 ± 8.86, and 157.34 ± 3.30%, respectively.
Balsaminaceae
;
Chromatography
;
Glioma
;
Impatiens
;
Inhibitory Concentration 50
;
Nerve Growth Factor
;
Neuroprotective Agents
;
Statistics as Topic
7.Inhibitory Effects of Resveratrol on Melanin Synthesis in Ultraviolet B-Induced Pigmentation in Guinea Pig Skin.
Taek Hwan LEE ; Jae Ok SEO ; So Hyeon BAEK ; Sun Yeou KIM
Biomolecules & Therapeutics 2014;22(1):35-40
Resveratrol is a polyphenolic compound found in various natural products such as grapes and berries and possesses anti-cancer, anti-hyperlipidemia, and anti-aging properties. Recently, it has been reported that resveratrol inhibits alpha-melanocyte-stimulating hormone signaling, viability, and migration in melanoma cells. However, these effects have not been confirmed in vivo, specifically brownish guinea pigs. To evaluate the potential of resveratrol as a regulator of melanin for hyperpigmentation therapy, the influence of resveratrol on pigmentation was investigated by ultraviolet B-induced hyperpigmentation in brownish guinea pig skin. We found that resveratrol reduced the expression of melanogenesis-related proteins tyrosinase, tyrosinase-related proteins 1 and 2, and microphthalmia-associated transcription factor in melanoma cells. Furthermore, topical application of resveratrol was demonstrated to significantly decrease hyperpigmentation on ultraviolet B-stimulated guinea pig skin in vivo. Based on our histological data, resveratrol inhibits melanin synthesis via a reduction in tyrosinase-related protein 2 among the melanogenic enzymes. This study is the first to provide evidence supporting resveratrol as a depigmentation agent, along with further clinical investigation of resveratrol in ultraviolet B-induced skin disorders such as hyperpigmentation and skin photoaging.
alpha-MSH
;
Animals
;
Biological Products
;
Fruit
;
Guinea Pigs*
;
Hyperpigmentation
;
Melanins*
;
Melanoma
;
Microphthalmia-Associated Transcription Factor
;
Monophenol Monooxygenase
;
Pigmentation*
;
Skin*
;
Vitis
8.Inhibitory Effects of Resveratrol on Melanin Synthesis in Ultraviolet B-Induced Pigmentation in Guinea Pig Skin.
Taek Hwan LEE ; Jae Ok SEO ; So Hyeon BAEK ; Sun Yeou KIM
Biomolecules & Therapeutics 2014;22(1):35-40
Resveratrol is a polyphenolic compound found in various natural products such as grapes and berries and possesses anti-cancer, anti-hyperlipidemia, and anti-aging properties. Recently, it has been reported that resveratrol inhibits alpha-melanocyte-stimulating hormone signaling, viability, and migration in melanoma cells. However, these effects have not been confirmed in vivo, specifically brownish guinea pigs. To evaluate the potential of resveratrol as a regulator of melanin for hyperpigmentation therapy, the influence of resveratrol on pigmentation was investigated by ultraviolet B-induced hyperpigmentation in brownish guinea pig skin. We found that resveratrol reduced the expression of melanogenesis-related proteins tyrosinase, tyrosinase-related proteins 1 and 2, and microphthalmia-associated transcription factor in melanoma cells. Furthermore, topical application of resveratrol was demonstrated to significantly decrease hyperpigmentation on ultraviolet B-stimulated guinea pig skin in vivo. Based on our histological data, resveratrol inhibits melanin synthesis via a reduction in tyrosinase-related protein 2 among the melanogenic enzymes. This study is the first to provide evidence supporting resveratrol as a depigmentation agent, along with further clinical investigation of resveratrol in ultraviolet B-induced skin disorders such as hyperpigmentation and skin photoaging.
alpha-MSH
;
Animals
;
Biological Products
;
Fruit
;
Guinea Pigs*
;
Hyperpigmentation
;
Melanins*
;
Melanoma
;
Microphthalmia-Associated Transcription Factor
;
Monophenol Monooxygenase
;
Pigmentation*
;
Skin*
;
Vitis
9.Resveratrol-Enriched Rice Down-Regulates Melanin Synthesis in UVB-Induced Guinea Pigs Epidermal Skin Tissue.
Taek Hwan LEE ; Jae Ok SEO ; Moon Ho DO ; Eunhee JI ; So Hyeon BAEK ; Sun Yeou KIM
Biomolecules & Therapeutics 2014;22(5):431-437
Synthetic compounds that are used in the clinic to regulate skin hyperpigmentation, such as arbutin, hydroquinone, and kojic acid, are only moderately effective. But, their use is limited by side effects. As part of an effort to overcome the limitations, we developed resveratrol-enriched rice (RR) using genetic engineering technique. Each of resveratrol and rice has been reported to produce anti-melanogenic effects. Therefore, we hypothesized that RR would show more anti-melanogenic effects than those of resveratrol or rice alone. Anti-melanogenic effect of RR was done by using melan-a mouse melanocytes. The depigmenting efficacy was then observed following topical application of the RR to UVB-stimulated hyperpigmented dorsal skin of guinea pigs. Treatment with RR extract resulted a 21.4 +/- 0.7% decrease in tyrosinase expression at melan-a cells. Colorimetric analysis showed a significantly lower depigmenting value by day 9 following treatment with RR in UVB-irradiated guinea pigs the dorsal skin (p<0.01), indicating that RR produced a depigmentation effect. By staining with Fontana-Masson stain, we found that the RR-treated group had more effect histopathologically in epidermal melanin production than resveratrol or rice alone-treated group. RR was associated with reduction in the levels of microphthalmia-associated transcription factor (MITF), and downregulation of tyrosinase and tyrosinase-related protein (TRP-2) expression, leading to inhibit epidermal melanin production by western blot analysis. This study suggests that the resveratrol-enriched rice may be a promising candidate in regulating skin pigmentation with UVB exposure.
Animals
;
Arbutin
;
Blotting, Western
;
Down-Regulation
;
Genetic Engineering
;
Guinea Pigs*
;
Hyperpigmentation
;
MART-1 Antigen
;
Melanins*
;
Melanocytes
;
Mice
;
Microphthalmia-Associated Transcription Factor
;
Monophenol Monooxygenase
;
Skin Pigmentation
;
Skin*
10.Potential Role of Dietary Salmon Nasal Cartilage Proteoglycan on UVB-Induced Photoaged Skin
Hae Ran LEE ; Seong-Min HONG ; Kyohee CHO ; Seon Hyeok KIM ; Eunji KO ; Eunyoo LEE ; Hyun Jin KIM ; Se Yeong JEON ; Seon Gil DO ; Sun Yeou KIM
Biomolecules & Therapeutics 2024;32(2):249-260
New supplements with preventive effects against skin photodamage are receiving increasing attention. This study evaluated the anti-photoaging effects of salmon nasal cartilage proteoglycan (SPG), acting as a functional material for skin health. We administered SPG to in vitro and in vivo models exposed to ultraviolet B (UVB) radiation and assessed its moisturizing and anti-wrinkle effects on dorsal mouse skin and keratinocytes and dermal fibroblasts cell lines. These results showed that SPG restored the levels of filaggrin, involucrin, and AQP3 in the epidermis of UVB-irradiated dorsal skin and keratinocytes, thereby enhancing the keratinization process and water flow. Additionally, SPG treatment increased the levels of hyaluronan and skin ceramide, the major components of intercellular lipids in the epidermis. Furthermore, SPG treatment significantly increased the levels of collagen and procollagen type 1 by down-regulating matrix metalloproteinase 1, which play a crucial role in skin fibroblasts, in both in vitro and in vivo models. In addition, SPG strongly inhibited mitogen-activated protein kinase (MAPKs) signaling, the including extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38. These findings suggest that dietary SPG may be an attractive functional food for preventing UVB-induced photoaging. And this SPG product may provide its best benefit when treating several signs of skin photoaging.