1.Phospholipase D2 promotes degradation of hypoxia-inducible factor-1alpha independent of lipase activity.
Mi Hee PARK ; Sun Sik BAE ; Kang Yell CHOI ; Do Sik MIN
Experimental & Molecular Medicine 2015;47(11):e196-
Hypoxia-inducible factor-1alpha (HIF-1alpha) is a key transcriptional mediator that coordinates the expression of various genes involved in tumorigenesis in response to changes in oxygen tension. The stability of HIF-1alpha protein is determined by oxygen-dependent prolyl hydroxylation, which is required for binding of the von Hippel-Lindau protein (VHL), the recognition component of an E3 ubiquitin ligase that targets HIF-1alpha for ubiquitination and degradation. Here, we demonstrate that PLD2 protein itself interacts with HIF-1alpha, prolyl hydroxylase (PHD) and VHL to promote degradation of HIF-1alpha via the proteasomal pathway independent of lipase activity. PLD2 increases PHD2-mediated hydroxylation of HIF-1alpha by increasing the interaction of HIF-1alpha with PHD2. Moreover, PLD2 promotes VHL-dependent HIF-1alpha degradation by accelerating the association between VHL and HIF-1alpha. The interaction of the pleckstrin homology domain of PLD2 with HIF-1alpha also promoted degradation of HIF-1alpha and decreased expression of its target genes. These results indicate that PLD2 negatively regulates the stability of HIF-1alpha through the dynamic assembly of HIF-1alpha, PHD2 and VHL.
Cell Line
;
HEK293 Cells
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/*metabolism
;
Phospholipase D/*metabolism
;
Prolyl Hydroxylases/metabolism
;
Proteasome Endopeptidase Complex/*metabolism
;
*Protein Interaction Maps
;
Proteolysis
;
Ubiquitin-Protein Ligases/metabolism
;
Von Hippel-Lindau Tumor Suppressor Protein/metabolism
2.Echinochrome A inhibits HMGB1-induced vascular smooth muscle cell migration by suppressing osteopontin expression
Ju Yeon KIM ; Hee Eun BAE ; Sun Sik BAE ; Hyun SUNG ; Chi Dae KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):83-92
Echinochrome A (Ech A) isolated from marine organisms is a therapeutic effector for various cardiovascular diseases, but its precise mechanisms are unclear.This study identified the role and mechanisms mediating the effects of Ech A on the migration of vascular smooth muscle cells (VSMCs) induced by high-mobility group box 1 (HMGB1). Compared to the control cells, the migration of VSMCs stimulated with HMGB1 (100 ng/ml) was markedly increased, which was significantly attenuated in cells pretreated with MPIIIB10 (100 ng/ml), a neutralizing monoclonal antibody for osteopontin (OPN). In VSMCs stimulated with HMGB1, the increased expression of OPN mRNA and protein was accompanied by an increased OPN promoter activity. In reporter gene assays using OPN promoter-luciferase constructs, the promoter region 538-234 bp of the transcription start site containing the binding sites for activator protein 1 (AP-1) was shown to be responsible for the increased transcriptional activity by HMGB1. In addition, the binding activity of AP-1 was increased in HMGB1-stimulated cells, highlighting the pivotal role of AP-1 on OPN expression in HMGB1-stimulated VSMCs. An examination of the vascular effects of Ech A showed that the increased AP-1 binding/promoter activities and OPN expression induced by HMGB1 were attenuated in cells pretreated with Ech A (3 or 10 μM). Similarly, Ech A inhibited HMGB1-induced VSMC migration in a concentration-dependent manner. These findings suggest that Ech A inhibits VSMC migration by suppressing OPN expression.Hence, Ech A is suggested as a potential therapeutic strategy for vascular remodeling in the injured vasculatures.
3.Echinochrome A inhibits HMGB1-induced vascular smooth muscle cell migration by suppressing osteopontin expression
Ju Yeon KIM ; Hee Eun BAE ; Sun Sik BAE ; Hyun SUNG ; Chi Dae KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):83-92
Echinochrome A (Ech A) isolated from marine organisms is a therapeutic effector for various cardiovascular diseases, but its precise mechanisms are unclear.This study identified the role and mechanisms mediating the effects of Ech A on the migration of vascular smooth muscle cells (VSMCs) induced by high-mobility group box 1 (HMGB1). Compared to the control cells, the migration of VSMCs stimulated with HMGB1 (100 ng/ml) was markedly increased, which was significantly attenuated in cells pretreated with MPIIIB10 (100 ng/ml), a neutralizing monoclonal antibody for osteopontin (OPN). In VSMCs stimulated with HMGB1, the increased expression of OPN mRNA and protein was accompanied by an increased OPN promoter activity. In reporter gene assays using OPN promoter-luciferase constructs, the promoter region 538-234 bp of the transcription start site containing the binding sites for activator protein 1 (AP-1) was shown to be responsible for the increased transcriptional activity by HMGB1. In addition, the binding activity of AP-1 was increased in HMGB1-stimulated cells, highlighting the pivotal role of AP-1 on OPN expression in HMGB1-stimulated VSMCs. An examination of the vascular effects of Ech A showed that the increased AP-1 binding/promoter activities and OPN expression induced by HMGB1 were attenuated in cells pretreated with Ech A (3 or 10 μM). Similarly, Ech A inhibited HMGB1-induced VSMC migration in a concentration-dependent manner. These findings suggest that Ech A inhibits VSMC migration by suppressing OPN expression.Hence, Ech A is suggested as a potential therapeutic strategy for vascular remodeling in the injured vasculatures.
4.Echinochrome A inhibits HMGB1-induced vascular smooth muscle cell migration by suppressing osteopontin expression
Ju Yeon KIM ; Hee Eun BAE ; Sun Sik BAE ; Hyun SUNG ; Chi Dae KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):83-92
Echinochrome A (Ech A) isolated from marine organisms is a therapeutic effector for various cardiovascular diseases, but its precise mechanisms are unclear.This study identified the role and mechanisms mediating the effects of Ech A on the migration of vascular smooth muscle cells (VSMCs) induced by high-mobility group box 1 (HMGB1). Compared to the control cells, the migration of VSMCs stimulated with HMGB1 (100 ng/ml) was markedly increased, which was significantly attenuated in cells pretreated with MPIIIB10 (100 ng/ml), a neutralizing monoclonal antibody for osteopontin (OPN). In VSMCs stimulated with HMGB1, the increased expression of OPN mRNA and protein was accompanied by an increased OPN promoter activity. In reporter gene assays using OPN promoter-luciferase constructs, the promoter region 538-234 bp of the transcription start site containing the binding sites for activator protein 1 (AP-1) was shown to be responsible for the increased transcriptional activity by HMGB1. In addition, the binding activity of AP-1 was increased in HMGB1-stimulated cells, highlighting the pivotal role of AP-1 on OPN expression in HMGB1-stimulated VSMCs. An examination of the vascular effects of Ech A showed that the increased AP-1 binding/promoter activities and OPN expression induced by HMGB1 were attenuated in cells pretreated with Ech A (3 or 10 μM). Similarly, Ech A inhibited HMGB1-induced VSMC migration in a concentration-dependent manner. These findings suggest that Ech A inhibits VSMC migration by suppressing OPN expression.Hence, Ech A is suggested as a potential therapeutic strategy for vascular remodeling in the injured vasculatures.
5.Echinochrome A inhibits HMGB1-induced vascular smooth muscle cell migration by suppressing osteopontin expression
Ju Yeon KIM ; Hee Eun BAE ; Sun Sik BAE ; Hyun SUNG ; Chi Dae KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):83-92
Echinochrome A (Ech A) isolated from marine organisms is a therapeutic effector for various cardiovascular diseases, but its precise mechanisms are unclear.This study identified the role and mechanisms mediating the effects of Ech A on the migration of vascular smooth muscle cells (VSMCs) induced by high-mobility group box 1 (HMGB1). Compared to the control cells, the migration of VSMCs stimulated with HMGB1 (100 ng/ml) was markedly increased, which was significantly attenuated in cells pretreated with MPIIIB10 (100 ng/ml), a neutralizing monoclonal antibody for osteopontin (OPN). In VSMCs stimulated with HMGB1, the increased expression of OPN mRNA and protein was accompanied by an increased OPN promoter activity. In reporter gene assays using OPN promoter-luciferase constructs, the promoter region 538-234 bp of the transcription start site containing the binding sites for activator protein 1 (AP-1) was shown to be responsible for the increased transcriptional activity by HMGB1. In addition, the binding activity of AP-1 was increased in HMGB1-stimulated cells, highlighting the pivotal role of AP-1 on OPN expression in HMGB1-stimulated VSMCs. An examination of the vascular effects of Ech A showed that the increased AP-1 binding/promoter activities and OPN expression induced by HMGB1 were attenuated in cells pretreated with Ech A (3 or 10 μM). Similarly, Ech A inhibited HMGB1-induced VSMC migration in a concentration-dependent manner. These findings suggest that Ech A inhibits VSMC migration by suppressing OPN expression.Hence, Ech A is suggested as a potential therapeutic strategy for vascular remodeling in the injured vasculatures.
6.Echinochrome A inhibits HMGB1-induced vascular smooth muscle cell migration by suppressing osteopontin expression
Ju Yeon KIM ; Hee Eun BAE ; Sun Sik BAE ; Hyun SUNG ; Chi Dae KIM
The Korean Journal of Physiology and Pharmacology 2025;29(1):83-92
Echinochrome A (Ech A) isolated from marine organisms is a therapeutic effector for various cardiovascular diseases, but its precise mechanisms are unclear.This study identified the role and mechanisms mediating the effects of Ech A on the migration of vascular smooth muscle cells (VSMCs) induced by high-mobility group box 1 (HMGB1). Compared to the control cells, the migration of VSMCs stimulated with HMGB1 (100 ng/ml) was markedly increased, which was significantly attenuated in cells pretreated with MPIIIB10 (100 ng/ml), a neutralizing monoclonal antibody for osteopontin (OPN). In VSMCs stimulated with HMGB1, the increased expression of OPN mRNA and protein was accompanied by an increased OPN promoter activity. In reporter gene assays using OPN promoter-luciferase constructs, the promoter region 538-234 bp of the transcription start site containing the binding sites for activator protein 1 (AP-1) was shown to be responsible for the increased transcriptional activity by HMGB1. In addition, the binding activity of AP-1 was increased in HMGB1-stimulated cells, highlighting the pivotal role of AP-1 on OPN expression in HMGB1-stimulated VSMCs. An examination of the vascular effects of Ech A showed that the increased AP-1 binding/promoter activities and OPN expression induced by HMGB1 were attenuated in cells pretreated with Ech A (3 or 10 μM). Similarly, Ech A inhibited HMGB1-induced VSMC migration in a concentration-dependent manner. These findings suggest that Ech A inhibits VSMC migration by suppressing OPN expression.Hence, Ech A is suggested as a potential therapeutic strategy for vascular remodeling in the injured vasculatures.
7.A Case of Cervical Pregnancy Treated with Intramuscular Methotrexate Injection.
Tae Yeop LEE ; Du Sik KONG ; Doo Jin BAE ; Sun Do HONG ; Yun Jung PARK ; Young Wook SUH
Korean Journal of Obstetrics and Gynecology 2000;43(5):897-900
Cervical pregnancy is a rare form of ectopic gestation in which the blastocyst implants in the cervical mucosa below the histologic cervical os. Because of the serious vaginal bleeding, hysterectomy was usually done in the management of cervical pregnancy. Howerver, conservative treatment is desirable for women who want to be pregnancy in the future. Methotrexate has been utilized recently for conservative management of cervical pregnancy. We report a case of cervical pregnancy which was treated succesfully with intramuscular methotrexate injection.
Blastocyst
;
Female
;
Humans
;
Hysterectomy
;
Methotrexate*
;
Mucous Membrane
;
Pregnancy*
;
Uterine Hemorrhage
8.Prevalence and Characteristics of Chemotherapy-related Cognitive Impairment in Patients with Breast Cancer.
Jin Hee PARK ; Sun Hyoung BAE ; Yong Sik JUNG ; Young Mi JUNG
Journal of Korean Academy of Nursing 2015;45(1):118-128
PURPOSE: Evidence suggests that some patients with breast cancer experience cognitive difficulties following chemotherapy. This longitudinal study was done to examine the prevalence of cognitive impairment and trajectory of cognitive function over time in women with breast cancer, who received adjuvant chemotherapy. METHODS: Participants were 137 patients with breast cancer. They completed neuropsychological tests and the Functional Assessment of Cancer Therapy-Cognitive Function before adjuvant therapy (pretest), toward the end of adjuvant therapy (posttest), and 6 months after the completion of adjuvant therapy (follow-up test). Of the patients, 91 were treated with adjuvant chemotherapy and 46 patients who did not receive chemotherapy made up the comparison group. A reliable-change index and repeated-measure ANOVA were used for statistical analyses. RESULTS: At the posttest point, over 30% of patients showed complex cognitive impairment and reported greater difficulty in subjective cognitive function. At the follow-up test point, 22.0% of patients exhibited complex cognitive impairment and 30.8% of patients complained of subjective cognitive impairment. Repeated-measure ANOVA showed significant decreases after receiving chemotherapy followed by small improvements 6 months after the completion of chemotherapy in cognitive domains of change for attention and concentration, memory, executive function, and subjective cognitive function. CONCLUSION: These results suggest that chemotherapy in patients with breast cancer may be associated with objective and subjective cognitive impairments. Further studies are needed to explore the potential risk factors and predictor of chemotherapy-related cognitive changes. Also nursing interventions for prevention and intervention of cognitive impairments should be developed and tested.
Adult
;
Analysis of Variance
;
Antineoplastic Combined Chemotherapy Protocols/adverse effects/*therapeutic use
;
Attention/drug effects
;
Breast Neoplasms/*drug therapy
;
Chemotherapy, Adjuvant
;
Cognitive Dysfunction/epidemiology/*etiology
;
Female
;
Humans
;
Longitudinal Studies
;
Memory/drug effects
;
Middle Aged
9.A case of concomittantly occurred bilateral adrenal medullary hyperplasia and a ganglioneuroma near the left adrenal gland.
Hoon Sik KIM ; Jun Young PARK ; Hak Sun KIM ; Kyo Il SUH ; Myung Hi YOO ; Guk Bae KIM ; So Young JIN ; Dong Hwa LEE
Journal of Korean Society of Endocrinology 1991;6(3):259-265
No abstract available.
Adrenal Glands*
;
Ganglioneuroma*
;
Hyperplasia*
10.Phytosphingosine-1-phosphate stimulates chemotactic migration of L2071 mouse fibroblasts via pertussis toxin-sensitive G-proteins.
Mi Kyoung KIM ; Kyoung Sun PARK ; Hyuck LEE ; Young Dae KIM ; Jeanho YUN ; Yoe Sik BAE
Experimental & Molecular Medicine 2007;39(2):185-194
Phytosphingosine-1-phosphate (PhS1P) was found to stimulate an intracellular calcium increase via phospholipase C but not pertussis toxin (PTX)- sensitive G-proteins in L2071 mouse fibroblasts. PhS1P also activated ERK and p38 kinase, and these activations by PhS1P were inhibited by PTX. Moreover, PhS1P stimulated the chemotactic migration of L2071 cells via PTX-sensitive Gi protein(s). In addition, the PhS1P-induced chemotactic migration of L2071 cells was also dramatically inhibited by LY294002 and SB203580 (inhibitors of phosphoinositide 3-kinase and p38 kinase, respectively). L2071 cells are known to express four S1P receptors, i.e., S1P1, S1P2, S1P3, and S1P4, and pretreatment with an S1P1 and S1P3 antagonist (VPC 23019) did not affect on PhS1P-induced chemotaxis. This study demonstrates that PhS1P stimulates at least two different signaling cascades, one is a PTX-insensitive but phospholipase C dependent intracellular calcium increase, and the other is a PTX-sensitive chemotactic migration mediated by phosphoinositide 3-kinase and p38 kinase.
1-Phosphatidylinositol 3-Kinase/metabolism
;
Animals
;
Calcium Signaling/drug effects
;
Chemotaxis/*drug effects
;
Estrenes/pharmacology
;
Extracellular Signal-Regulated MAP Kinases/metabolism
;
Fibroblasts/*cytology/*drug effects
;
GTP-Binding Proteins/*metabolism
;
Gene Expression Regulation/drug effects
;
Humans
;
Mice
;
Pertussis Toxin/*pharmacology
;
Phosphorylation/drug effects
;
Pyrrolidinones/pharmacology
;
RNA, Messenger/genetics/metabolism
;
Receptors, Lysosphingolipid/genetics/metabolism
;
Sphingosine/*analogs & derivatives/pharmacology
;
p38 Mitogen-Activated Protein Kinases/metabolism