1.Investigation of Filamentous Fungi Producing Safe, Functional Water-Soluble Pigments.
Young Mok HEO ; Kyeongwon KIM ; Sun Lul KWON ; Joorim NA ; Hanbyul LEE ; Seokyoon JANG ; Chul Hwan KIM ; Jinho JUNG ; Jae Jin KIM
Mycobiology 2018;46(3):269-277
The production of water-soluble pigments by fungal strains indigenous to South Korea was investigated to find those that are highly productive in submerged culture. Among 113 candidates, 34 strains that colored the inoculated potato dextrose agar medium were selected. They were cultured in potato dextrose broth and extracted with ethanol. The productivity, functionality (radical-scavenging activities), and color information (CIELAB values) of the pigment extracts were measured. Five species produced intense yellowish pigments, and two produced intense reddish pigments that ranked the highest in terms of absorbance units produced per day. The pigment extracts of Penicillium miczynskii, Sanghuangporus baumii, Trichoderma sp. 1, and Trichoderma afroharzianum exhibited high radical-scavenging activity. However, the S. baumii extract showed moderate toxicity in the acute toxicity test, which limits the industrial application of this pigment. In conclusion, P. miczynskii KUC1721, Trichoderma sp. 1 KUC1716, and T. afroharzianum KUC21213 were the best fungal candidates to be industrial producers of safe, functional water-soluble pigments.
Agar
;
Colorimetry
;
Efficiency
;
Ethanol
;
Fungi*
;
Glucose
;
Korea
;
Penicillium
;
Solanum tuberosum
;
Toxicity Tests, Acute
;
Trichoderma
2.New Report of Three Unrecorded Species in Trichoderma harzianum Species Complex in Korea.
Seokyoon JANG ; Sun Lul KWON ; Hanbyul LEE ; Yeongseon JANG ; Myung Soo PARK ; Young Woon LIM ; Changmu KIM ; Jae Jin KIM
Mycobiology 2018;46(3):177-184
The genus Trichoderma (Hypocreaceae, Ascomycota) consists of globally distributed fungi. Among them, T. harzianum, one of the most commonly collected Trichoderma species, had been known as a polyphyletic or aggregate species. However, a total of 19 species were determined from the polyphyletic groups of T. harzianum. Thus, we explored Korean “T. harzianum” specimens that were collected in 2013–2014. These specimens were re-examined based on a recent study with translate elongation factor 1-alpha (EF1α) sequences to reveal cryptic Trichoderma species in Korea. As a result, four different species, T. afroharzianum, T. atrobruneum, T. pyramidale, and T. harzianum, were identified. Except T. harzianum, the other three species have not been reported in Korea. In this work, we describe these species and provide figures.
Classification
;
Fungi
;
Korea*
;
Peptide Elongation Factors
;
Phylogeny
;
Trichoderma*
3.Seven Unrecorded Indigenous Fungi from Mudeungsan National Park in Korea
Minseo CHO ; Sun Lul KWON ; Young Mok HEO ; Young Min LEE ; Hanbyul LEE ; Changmu KIM ; Byoung Jun AHN ; Jae-Jin KIM
Mycobiology 2022;50(4):203-212
Fungi act as important decomposers in the forest environment. They recycle essential nutrients, promote plant growth through mycorrhizal relationships, and act as food for small animals. Samples of 265 indigenous fungal species were collected from Mudeungsan National Park in 2020. These species were identified based on morphological, molecular, and phylogenetic analyses using the internal transcribed spacer (ITS), nuclear large subunit rRNA (LSU), and RNA polymerase II second largest subunit (rpb2) regions. Subsequently, seven species were identified as unrecorded species in Korea: Cordyceps cicadae, Dentocorticium bicolor, Hymenochaete nanospora, Physisporinus crataegi, Rigidoporus piceicola, Russula raoultii, and Scutellinia crinita. This study reveals their detailed macro- and microscopic morphological characteristics with phylogenetic trees to report them as unrecorded species in Korea.
4.Two Unrecorded Apiospora Species Isolated from Marine Substrates in Korea with Eight New Combinations (A. piptatheri and A. rasikravindrae)
Sun Lul KWON A ; Minseo CHO ; Young Min LEE ; Changmu KIM ; Soo Min LEE ; Byoung Jun AHN ; Hanbyul LEE ; Jae-Jin KIM
Mycobiology 2022;50(1):46-54
Although Apiospora Sacc. has previously been considered a sexual morph of Arthrinium species on the basis of phylogenetic, morphological, and ecological diagnoses, a recent study delimited these as different species. Recently, 14 species, including eight new species, of marine Arthrinium have been reported from Korea. Six known species have previously been renamed as species in the genus Apiospora (A. arundinis, A. marii, A. piptatheri, A. rasikravindrae, A. sacchari, and A. saccharicola). However, the eight new species of marine Arthrinium (Ar. agari, Ar. arctoscopi, Ar. fermenti, Ar. koreanum, Ar. marinum, Ar. pusillispermum, Ar. sargassi, and Ar. taeanense) are yet to be studied, and thus the taxonomic status of these species remains to be clarified. In this study, we conducted phylogenetic analyses using the internal transcribed spacer, 28S large subunit ribosomal RNA gene, translation elongation factor 1-alpha, and beta-tubulin regions to confirm the phylogenetic position of these eight species. Based on these analyses, we re-identified the eight Arthrinium species as new combinations in Apiospora. Additionally, among the six known Apiospora species, two (A. piptatheriand A. rasikravindrae) have not previously been recorded in Korea. On the basis of morphological and molecular analyses, we report these as new species in Korea. Herein, we present scanning electron micrographs detailing the morphologies of these species, along with phylogenetic trees and detailed descriptions.
5.Diversity of the Bambusicolous Fungus Apiospora in Korea: Discovery of New Apiospora Species
Sun Lul KWON ; Minseo CHO ; Young Min LEE ; Hanbyul LEE ; Changmu KIM ; Gyu-Hyeok KIM ; Jae-Jin KIM
Mycobiology 2022;50(5):302-316
Many Apiospora species have been isolated from bamboo plants – to date, 34 bambusicolous Apiospora species have been recorded. They are known as saprophytes, endophytes, and plant pathogens. In this study, 242 bambusicolous Apiospora were isolated from various bamboo materials (branches, culms, leaves, roots, and shoots) and examined using DNA sequence similarity based on the internal transcribed spacer, 28S large subunit ribosomal RNA gene, translation elongation factor 1-alpha, and beta-tubulin regions. Nine Apiospora species (Ap. arundinis, Ap. camelliae-sinensis, Ap. hysterina, Ap. lageniformis sp. nov., Ap. paraphaeosperma, Ap. pseudohyphopodii sp. nov., Ap. rasikravindrae, Ap. saccharicola, and Ap. sargassi) were identified via molecular analysis. Moreover, the highest diversity of Apiospora was found in culms, and the most abundant species was Ap. arundinis. Among the nine Apiospora species, two (Ap. hysterina and Ap. paraphaeosperma) were unrecorded in Korea, and the other two species (Ap. lageniformis sp. nov. and Ap. pseudohyphopodii