1.System for Collecting Biosignal Data from Multiple Patient Monitoring Systems.
Dukyong YOON ; Sukhoon LEE ; Tae Young KIM ; JeongGil KO ; Wou Young CHUNG ; Rae Woong PARK
Healthcare Informatics Research 2017;23(4):333-337
OBJECTIVES: Biosignal data include important physiological information. For that reason, many devices and systems have been developed, but there has not been enough consideration of how to collect and integrate raw data from multiple systems. To overcome this limitation, we have developed a system for collecting and integrating biosignal data from two patient monitoring systems. METHODS: We developed an interface to extract biosignal data from Nihon Kohden and Philips monitoring systems. The Nihon Kohden system has a central server for the temporary storage of raw waveform data, which can be requested using the HL7 protocol. However, the Philips system used in our hospital cannot save raw waveform data. Therefore, our system was connected to monitoring devices using the RS232 protocol. After collection, the data were transformed and stored in a unified format. RESULTS: From September 2016 to August 2017, we collected approximately 117 patient-years of waveform data from 1,268 patients in 79 beds of five intensive care units. Because the two systems use the same data storage format, the application software could be run without compatibility issues. CONCLUSIONS: Our system collects biosignal data from different systems in a unified format. The data collected by the system can be used to develop algorithms or applications without the need to consider the source of the data.
Electrocardiography
;
Humans
;
Information Storage and Retrieval
;
Intensive Care Units
;
Monitoring, Physiologic*
;
Photoplethysmography
2.Development of a Risk Score for QT Prolongation in the Intensive Care Unit Using Time-Series Electrocardiogram Data and Electronic Medical Records
Tae Young KIM ; Byung Jin CHOI ; Yeryung KOO ; Sukhoon LEE ; Dukyong YOON
Healthcare Informatics Research 2021;27(3):182-188
Objectives:
Drug-induced QT prolongation can lead to life-threatening arrhythmia. In the intensive care unit (ICU), various drugs are administered concurrently, which can increase the risk of QT prolongation. However, no well-validated method to evaluate the risk of QT prolongation in real-world clinical practice has been established. We developed a risk scoring model to continuously evaluate the quantitative risk of QT prolongation in real-world clinical practice in the ICU.
Methods:
Continuous electrocardiogram (ECG) signals measured by patient monitoring devices and Electronic Medical Records data were collected for ICU patients. QT and RR intervals were measured from raw ECG data, and a corrected QT interval (QTc) was calculated by Bazett’s formula. A case-crossover study design was adopted. A case was defined as an occurrence of QT prolongation ≥12 hours after any previous QT prolongation. The patients served as their own controls. Conditional logistic regression was conducted to analyze prescription, surgical history, and laboratory test data. Based on the regression analysis, a QTc prolongation risk scoring model was established.
Results:
In total, 811 ICU patients who experienced QT prolongation were included in this study. Prescription information for 13 drugs was included in the risk scoring model. In the validation dataset, the high-risk group showed a higher rate of QT prolongation than the low-and low moderate-risk groups.
Conclusions
Our proposed model may facilitate risk stratification for QT prolongation during ICU care as well as the selection of appropriate drugs to prevent QT prolongation.
3.Deep Learning-Based Electrocardiogram Signal Noise Detection and Screening Model
Dukyong YOON ; Hong Seok LIM ; Kyoungwon JUNG ; Tae Young KIM ; Sukhoon LEE
Healthcare Informatics Research 2019;25(3):201-211
OBJECTIVES: Biosignal data captured by patient monitoring systems could provide key evidence for detecting or predicting critical clinical events; however, noise in these data hinders their use. Because deep learning algorithms can extract features without human annotation, this study hypothesized that they could be used to screen unacceptable electrocardiograms (ECGs) that include noise. To test that, a deep learning-based model for unacceptable ECG screening was developed, and its screening results were compared with the interpretations of a medical expert. METHODS: To develop and apply the screening model, we used a biosignal database comprising 165,142,920 ECG II (10-second lead II electrocardiogram) data gathered between August 31, 2016 and September 30, 2018 from a trauma intensive-care unit. Then, 2,700 and 300 ECGs (ratio of 9:1) were reviewed by a medical expert and used for 9-fold cross-validation (training and validation) and test datasets. A convolutional neural network-based model for unacceptable ECG screening was developed based on the training and validation datasets. The model exhibiting the lowest cross-validation loss was subsequently selected as the final model. Its performance was evaluated through comparison with a test dataset. RESULTS: When the screening results of the proposed model were compared to the test dataset, the area under the receiver operating characteristic curve and the F1-score of the model were 0.93 and 0.80 (sensitivity = 0.88, specificity = 0.89, positive predictive value = 0.74, and negative predictive value = 0.96). CONCLUSIONS: The deep learning-based model developed in this study is capable of detecting and screening unacceptable ECGs efficiently.
Dataset
;
Electrocardiography
;
Humans
;
Learning
;
Mass Screening
;
Monitoring, Physiologic
;
Noise
;
ROC Curve
;
Sensitivity and Specificity
;
Signal Detection, Psychological
4.Development of a Risk Score for QT Prolongation in the Intensive Care Unit Using Time-Series Electrocardiogram Data and Electronic Medical Records
Tae Young KIM ; Byung Jin CHOI ; Yeryung KOO ; Sukhoon LEE ; Dukyong YOON
Healthcare Informatics Research 2021;27(3):182-188
Objectives:
Drug-induced QT prolongation can lead to life-threatening arrhythmia. In the intensive care unit (ICU), various drugs are administered concurrently, which can increase the risk of QT prolongation. However, no well-validated method to evaluate the risk of QT prolongation in real-world clinical practice has been established. We developed a risk scoring model to continuously evaluate the quantitative risk of QT prolongation in real-world clinical practice in the ICU.
Methods:
Continuous electrocardiogram (ECG) signals measured by patient monitoring devices and Electronic Medical Records data were collected for ICU patients. QT and RR intervals were measured from raw ECG data, and a corrected QT interval (QTc) was calculated by Bazett’s formula. A case-crossover study design was adopted. A case was defined as an occurrence of QT prolongation ≥12 hours after any previous QT prolongation. The patients served as their own controls. Conditional logistic regression was conducted to analyze prescription, surgical history, and laboratory test data. Based on the regression analysis, a QTc prolongation risk scoring model was established.
Results:
In total, 811 ICU patients who experienced QT prolongation were included in this study. Prescription information for 13 drugs was included in the risk scoring model. In the validation dataset, the high-risk group showed a higher rate of QT prolongation than the low-and low moderate-risk groups.
Conclusions
Our proposed model may facilitate risk stratification for QT prolongation during ICU care as well as the selection of appropriate drugs to prevent QT prolongation.