1.Brain Metabolite Changes in Insomnia and Obstructive Sleep Apnea
Haejin HONG ; Hyangwon LEE ; Sujung YOON ; Jungyoon KIM
Sleep Medicine and Psychophysiology 2021;28(1):18-26
Sleep is essential to brain function and mental health. Insomnia and obstructive sleep apnea (OSA) are the two most common sleep disorders, and are major public health concerns. Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive method of quantifying neurometabolite concentrations. Therefore, 1H-MRS studies on individuals with sleep disorders may enhance our understanding of the pathophysiology of these disorders. In this article, we reviewed 1H-MRS studies in insomnia and OSA that reported changes in neurometabolite concentrations. Previous studies have consistently reported insomnia-related reductions in γ-aminobutyric acid (GABA) levels in the frontal and occipital regions, which suggest that changes in GABA are important to the etiology of insomnia. These results may support the hyperarousal theory that insomnia is associated with increased cognitive and physiological arousal. In addition, the severity of insomnia was associated with low glutamate and glutamine levels. Previous studies of OSA have consistently reported reduced N-acetylaspartate (NAA) levels in the frontal, parietooccipital, and temporal regions. In addition, OSA was associated with increased myo-inositol levels. These results may provide evidence that intermittent hypoxia induced by OSA may result in neuronal damage in the brain, which can be related to neurocognitive dysfunction in patients with OSA. The current review summarizes findings related to neurochemical changes in insomnia and OSA. Future well-designed studies using 1H-MRS have the potential to enhance our understanding of the pathophysiology of sleep disorders including insomnia and OSA.
2.A Review on Brain Imaging Studies of Suicide in Youth
Suji LEE ; Shinhye KIM ; Sujung YOON
Journal of the Korean Society of Biological Psychiatry 2021;28(2):36-49
Suicide is a leading cause of death worldwide, especially among adolescents and young adults. Considering this fact, it is imperative that we understand the neural mechanisms underlying suicidal thoughts and behaviors in youth from a neurodevelopmental perspective. In this review, we focused on the magnetic resonance imaging studies that examined the neural correlates of suicidal ideations (SI) or attempts (SA) in youth. We reviewed twenty-three cross-sectional studies reporting the structural and functional alterations in association with SI or SA among adolescents and young adults with various mental disorders. The previous literature suggests that the dorsolateral prefrontal cortex, anterior cingulate cortex, and ventral frontolimbic circuit, may play an important role in the pathophysiology of suicidal behavior in youth through altered top-down control over emotion and impulsivity. Future studies with a longitudinal design and using multimodal imaging techniques may be of help to identify novel therapeutic targets specific for youth with suicidal thoughts and behaviors.
3.A Review of Brain Imaging Studies on Classical Fear Conditioning and Extinction in Healthy Adults
Ilhyang KANG ; Chaewon SUH ; Sujung YOON ; Jungyoon KIM
Journal of the Korean Society of Biological Psychiatry 2021;28(2):23-35
Fear conditioning and extinction, which are adaptive processes to learn and avoid potential threats, have essential roles in the pathophysiology of anxiety disorders. Experimental fear conditioning and extinction have been used to identify the mechanism of fear and anxiety in humans. However, the brain-based mechanisms of fear conditioning and extinction are yet to be established. In the current review, we summarized the results of neuroimaging studies that examined the brain changes—functional activity and structures—regarding fear conditioning or extinction in healthy individuals. The functional activity of the amygdala, insula, anterior cingulate gyrus, ventromedial prefrontal cortex, and hippocampus changed dynamically with both fear conditioning and extinction. This review may provide an up-to-date summary that may broaden our understanding of pathophysiological mechanisms of anxiety disorder. In addition, the brain regions that are involved in the fear conditioning and extinction may be considered as potential treatment targets in the future studies.
4.Brain Metabolite Changes in Insomnia and Obstructive Sleep Apnea
Haejin HONG ; Hyangwon LEE ; Sujung YOON ; Jungyoon KIM
Sleep Medicine and Psychophysiology 2021;28(1):18-26
Sleep is essential to brain function and mental health. Insomnia and obstructive sleep apnea (OSA) are the two most common sleep disorders, and are major public health concerns. Proton magnetic resonance spectroscopy (1H-MRS) is a non-invasive method of quantifying neurometabolite concentrations. Therefore, 1H-MRS studies on individuals with sleep disorders may enhance our understanding of the pathophysiology of these disorders. In this article, we reviewed 1H-MRS studies in insomnia and OSA that reported changes in neurometabolite concentrations. Previous studies have consistently reported insomnia-related reductions in γ-aminobutyric acid (GABA) levels in the frontal and occipital regions, which suggest that changes in GABA are important to the etiology of insomnia. These results may support the hyperarousal theory that insomnia is associated with increased cognitive and physiological arousal. In addition, the severity of insomnia was associated with low glutamate and glutamine levels. Previous studies of OSA have consistently reported reduced N-acetylaspartate (NAA) levels in the frontal, parietooccipital, and temporal regions. In addition, OSA was associated with increased myo-inositol levels. These results may provide evidence that intermittent hypoxia induced by OSA may result in neuronal damage in the brain, which can be related to neurocognitive dysfunction in patients with OSA. The current review summarizes findings related to neurochemical changes in insomnia and OSA. Future well-designed studies using 1H-MRS have the potential to enhance our understanding of the pathophysiology of sleep disorders including insomnia and OSA.
5.The Effect of Hormonal Changes During the Menstrual Cycle on the Brain: Focusing on Structural and Functional Neuroimaging Studies
Eunji HA ; Yumi SONG ; Jungyoon KIM ; Sujung YOON
Journal of the Korean Society of Biological Therapies in Psychiatry 2021;27(2):97-111
It is well known that sex hormones are potential modulators of brain functions and women experience dynamic hormonal changes during the menstrual cycle. Previous animal studies have reported that the variations in sex hormones over the menstrual cycle may affect cognitive function, emotion, and behavior by altering structures and functional connectivity of the brain. Considering the prevalence of certain neuropsychiatric disorders such as mood and anxiety disorders is relatively high in women, as compared with men, fluctuations of sex hormones over the menstrual cycle may influence the human brain and potentially underlie sex differences in clinical features of several neuropsychiatric disorders. There is, however, little evidence regarding the exact mechanisms underlying the effects of sex hormones on the human brain. In this review, we focused on studies to examine structural and functional changes over the menstrual cycles in women and aimed to provide an up-to-date overview of neuroimaging studies regarding the effects of sex hormonal fluctuations on the brain and behaviors.
6.The Effect of Hormonal Changes During the Menstrual Cycle on the Brain: Focusing on Structural and Functional Neuroimaging Studies
Eunji HA ; Yumi SONG ; Jungyoon KIM ; Sujung YOON
Journal of the Korean Society of Biological Therapies in Psychiatry 2021;27(2):97-111
It is well known that sex hormones are potential modulators of brain functions and women experience dynamic hormonal changes during the menstrual cycle. Previous animal studies have reported that the variations in sex hormones over the menstrual cycle may affect cognitive function, emotion, and behavior by altering structures and functional connectivity of the brain. Considering the prevalence of certain neuropsychiatric disorders such as mood and anxiety disorders is relatively high in women, as compared with men, fluctuations of sex hormones over the menstrual cycle may influence the human brain and potentially underlie sex differences in clinical features of several neuropsychiatric disorders. There is, however, little evidence regarding the exact mechanisms underlying the effects of sex hormones on the human brain. In this review, we focused on studies to examine structural and functional changes over the menstrual cycles in women and aimed to provide an up-to-date overview of neuroimaging studies regarding the effects of sex hormonal fluctuations on the brain and behaviors.
7.Peripheral Biomarker Candidates of Posttraumatic Stress Disorder.
Hee Jin KANG ; Sujung YOON ; In Kyoon LYOO
Experimental Neurobiology 2015;24(3):186-196
There is high variability in the manifestation of physical and mental health problems following exposure to trauma and disaster. Although most people may show a range of acute symptoms in the aftermath of traumatic events, chronic and persistent mental disorders may not be developed in all individuals who were exposed to traumatic events. The most common long-term pathological consequence after trauma exposure is posttraumatic stress disorder (PTSD). However, comorbid conditions including depression, anxiety disorder, substance use-related problems, and a variety of other symptoms may frequently be observed in individuals with trauma exposure. Post-traumatic syndrome (PTS) is defined collectively as vast psychosocial problems that could be experienced in response to traumatic events. It is important to predict who will continue to suffer from physical and mental health problems and who will recover following trauma exposure. However, given the heterogeneity and variability in symptom manifestations, it is difficult to find identify biomarkers which predict the development of PTSD. In this review, we will summarize the results of recent studies with regard to putative biomarkers of PTSD and suggest future research directions for biomarker discovery for PTSD.
Anxiety Disorders
;
Depression
;
Disasters
;
Inflammation
;
Mental Disorders
;
Mental Health
;
Neurosecretory Systems
;
Population Characteristics
;
Stress Disorders, Post-Traumatic*
;
Synaptic Transmission
;
Biomarkers
8.A Review on Effects of Non-Invasive Brain Stimulation in the Treatment of Sleep Disorders
Shinhye KIM ; Suji LEE ; Soo Mee LIM ; Sujung YOON
Sleep Medicine and Psychophysiology 2021;28(2):53-69
Sleep disorders, increasingly prevalent in the general population, induce impairment in daytime functioning and other clinical problems. As changes in cortical excitability have been reported as potential pathophysiological mechanisms underlying sleep disorders, multiple studies have explored clinical effects of modulating cortical excitability through non-invasive brain stimulation in treating sleep disorders. In this study, we critically reviewed clinical studies using non-invasive brain stimulation, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), for treatment of sleep disorders. Previous studies have reported inconsistent therapeutic effects of TMS and tDCS for various kinds of sleep disorders. Specifically, low-frequency repetitive TMS (rTMS) and cathodal tDCS, both of which exert an inhibitory effect on cortical excitability, have shown inconsistent therapeutic effects for insomnia. On the other hand, high-frequency rTMS and anodal tDCS, both of which facilitate cortical excitability, have improved the symptoms of hypersomnia. In studies of restless legs syndrome, high-frequency rTMS and anodal tDCS induced inconsistent therapeutic effects. Single TMS and rTMS have shown differential therapeutic effects for obstructive sleep apnea. These inconsistent findings indicate that the distinctive characteristics of each non-invasive brain stimulation method and specific pathophysiological mechanisms underlying particular sleep disorders should be considered in an integrated manner for treatment of various sleep disorders. Future studies are needed to provide optimized TMS and tDCS protocols for each sleep disorder, considering distinctive effects of non-invasive brain stimulation and pathophysiology of each sleep disorder.
9.Strategies for Clinical Application of Neuroscience Findings.
Han Byul CHO ; Young Hoon KIM ; Arim YEOM ; Sujung YOON
Journal of the Korean Society of Biological Psychiatry 2015;22(3):113-117
Psychiatry has progressed with neurobiological basis, providing individually tailored treatment, preventing mental illness, and managing public mental health. Foundational knowledge that may contribute to the development of psychiatry and neuroscience has been attained through continual national and international investment in research. However, this knowledge obtained from neurobiological research is not being applied to clinical practice proactively. This may be due to a lack of support for translational research connecting neuroscience with clinical practice, and a lack of development and availability of educational programs for clinical psychiatrists. To solve these problems, it is essential to support translational research conducted by clinicians and to establish an appropriate reward system. Considering the direction of progress in psychiatry and the demand from clinicians, appropriate investment in research and education programs that provide neurobiological knowledge applicable to clinical practice is required. Researchers and educators must also communicate and collaborate to deliver neurobiological findings effectively.
Education
;
Education, Medical
;
Investments
;
Mental Health
;
Neurosciences*
;
Psychiatry
;
Public Health
;
Reward
;
Translational Medical Research
10.Molecular Neuroimaging in Posttraumatic Stress Disorder.
Jooyeon Jamie IM ; Eun NAMGUNG ; Yejee CHOI ; Jung Yoon KIM ; Sandy Jeong RHIE ; Sujung YOON
Experimental Neurobiology 2016;25(6):277-295
Over the past decade, an increasing number of neuroimaging studies have provided insight into the neurobiological mechanisms of posttraumatic stress disorder (PSTD). In particular, molecular neuroimaging techniques have been employed in examining metabolic and neurochemical processes in PTSD. This article reviews molecular neuroimaging studies in PTSD and focuses on findings using three imaging modalities including positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance spectroscopy (MRS). Although there were some inconsistences in the findings, patients with PTSD showed altered cerebral metabolism and perfusion, receptor bindings, and metabolite profiles in the limbic regions, medial prefrontal cortex, and temporal cortex. Studies that have investigated brain correlates of treatment response are also reviewed. Lastly, the limitations of the molecular neuroimaging studies and potential future research directions are discussed.
Brain
;
Humans
;
Magnetic Resonance Spectroscopy
;
Metabolism
;
Neuroimaging*
;
Perfusion
;
Positron-Emission Tomography
;
Prefrontal Cortex
;
Stress Disorders, Post-Traumatic*
;
Temporal Lobe
;
Tomography, Emission-Computed, Single-Photon