1.Mercury Promotes Catecholamines Which Potentiate Mercurial Autoimmunity and Vasodilation: Implications for Inositol 1,4,5-Triphosphate 3-Kinase C Susceptibility in Kawasaki Syndrome.
Deniz YETER ; Richard DETH ; Ho Chang KUO
Korean Circulation Journal 2013;43(9):581-591
Previously, we reviewed biological evidence that mercury could induce autoimmunity and coronary arterial wall relaxation as observed in Kawasaki syndrome (KS) through its effects on calcium signaling, and that inositol 1,4,5-triphosphate 3-kinase C (ITPKC) susceptibility in KS would predispose patients to mercury by increasing Ca2+ release. Hg2+ sensitizes inositol 1,4,5-triphosphate (IP3) receptors at low doses, which release Ca2+ from intracellular stores in the sarcoplasmic reticulum, resulting in delayed, repetitive calcium influx. ITPKC prevents IP3 from triggering IP3 receptors to release calcium by converting IP3 to inositol 1,3,4,5-tetrakisphosphate. Defective IP3 phosphorylation resulting from reduced genetic expressions of ITPKC in KS would promote IP3, which increases Ca2+ release. Hg2+ increases catecholamine levels through the inhibition of S-adenosylmethionine and subsequently catechol-O-methyltransferase (COMT), while a single nucleotide polymorphism of the COMT gene (rs769224) was recently found to be significantly associated with the development of coronary artery lesions in KS. Accumulation of norepinephrine or epinephrine would potentiate Hg2+-induced calcium influx by increasing IP3 production and increasing the permeability of cardiac sarcolemma to Ca2+. Norepinephrine and epinephrine also promote the secretion of atrial natriuretic peptide, a potent vasodilator that suppresses the release of vasoconstrictors. Elevated catecholamine levels can induce hypertension and tachycardia, while increased arterial pressure and a rapid heart rate would promote arterial vasodilation and subsequent fatal thromboses, particularly in tandem. Genetic risk factors may explain why only a susceptible subset of children develops KS although mercury exposure from methylmercury in fish or thimerosal in pediatric vaccines is nearly ubiquitous. During the infantile acrodynia epidemic, only 1 in 500 children developed acrodynia whereas mercury exposure was very common due to the use of teething powders. This hypothesis mirrors the leading theory for KS in which a widespread infection only induces KS in susceptible children. Acrodynia can mimic the clinical picture of KS, leading to its inclusion in the differential diagnosis for KS. Catecholamine levels are often elevated in acrodynia and may also play a role in KS. We conclude that KS may be the acute febrile form of acrodynia.
Acrodynia
;
Arterial Pressure
;
Autoimmunity
;
Calcium
;
Calcium Signaling
;
Catechol O-Methyltransferase
;
Catecholamines
;
Child
;
Coronary Vessels
;
Diagnosis, Differential
;
Epinephrine
;
Heart Rate
;
Humans
;
Hydrazines
;
Hypertension
;
Inositol
;
Inositol 1,4,5-Trisphosphate
;
Inositol 1,4,5-Trisphosphate Receptors
;
Inositol Phosphates
;
Mucocutaneous Lymph Node Syndrome
;
Norepinephrine
;
Permeability
;
Phosphorylation
;
Polymorphism, Single Nucleotide
;
Powders
;
Relaxation
;
Risk Factors
;
S-Adenosylmethionine
;
Sarcolemma
;
Sarcoplasmic Reticulum
;
Tachycardia
;
Thimerosal
;
Thrombosis
;
Tooth
;
Tooth Eruption
;
Vaccines
;
Vasoconstrictor Agents
;
Vasodilation
2.The distribution of inositol 1,4,5-trisphosphate 3-kinase in rat cerebellum.
Hae Kyoung LEE ; Jae Pil KO ; Seung Jun HWANG ; Young Suk SUH
Korean Journal of Anatomy 1993;26(1):94-102
No abstract available.
Animals
;
Cerebellum*
;
Inositol 1,4,5-Trisphosphate*
;
Inositol*
;
Rats*
3.Distribution of inositol 1,4,5-trisphosphate 3-kinase in the cat brain by immunohistochemical study.
Dong Hou KIM ; Hyun KIM ; Seung Jun HWANG ; Hae Nam HONG ; Young Suk SUH
Korean Journal of Anatomy 1993;26(4):378-389
No abstract available.
Animals
;
Brain*
;
Cats*
;
Inositol 1,4,5-Trisphosphate*
;
Inositol*
4.The effect of Ni2+ on the intracellular Ca2+ increase of the mouse early 2-cell embryos.
Sook Young YOON ; Eun Mi LEE ; In Ha BAE
Korean Journal of Fertility and Sterility 2003;30(4):269-280
OBJECTIVE: We reported the overcoming effect of Ni2+ on the in vitro 2-cell block of mouse embryos. In this study, we aim to investigate whether Ni2+ should induce intracellular Ca2+ transient in the mouse embryos. MATERIALS AND METHODS: Embryos were collected at post hCG 32hr from the oviduct of the ICR mouse and cultured in M2 medium omitted phenol red. Intracellular Ca2+ was checked by using a confocal laser scanning microscope and fluo-3AM by using various intracellular Ca2+ antagonists. RESULTS: In 1mM Ni2+ treated medium which contained Ca2+(1.71mM), 75.7% of the embryos showed [Ca2+]i transient about 200 sec later. In the Ca2+-free medium, 69.8% of the embryos showed [Ca2+]i transient. In U73122, phospholipaseC(PLC) inhibitor (5uM, 10min) pretreated group, 33.3% of the embryos showed [Ca2+]i transient. Heparine, inositol 1,4,5-triphosphate receptor(IP3R) antagonist preinjected embryos showed no response with 1mM Ni2+. In danthrolene treatment, ryanodine receptor(RyR)-antagonist, 43% embryos showed [Ca2+]i transient but they showed delayed response about 340sec in the presence of Ca2+. CONCLUSIONS: Summing up the above results, Ni2+ seems to induce Ca2+-release from the Ca2+-store even in the Ca2+-free medium. IP3 receptors of the mouse 2-cell embryos might have an essential role for the intracellular Ca2+ increase by Ni2+.
Animals
;
Embryonic Structures*
;
Heparin
;
Inositol 1,4,5-Trisphosphate
;
Inositol 1,4,5-Trisphosphate Receptors
;
Mice*
;
Mice, Inbred ICR
;
Oviducts
;
Phenolsulfonphthalein
;
Ryanodine
5.Engineering MEP pathway in Escherichia coli for amorphadiene production and optimizing the bioprocess through glucose feeding control.
Jianfeng WANG ; Zhiqiang XIONG ; Siliang ZHANG ; Yong WANG
Chinese Journal of Biotechnology 2014;30(1):64-75
The pathway of 2-methyl-D-erythritol-4-phosphate (MEP) is the exclusive isoprenoid precursor biosynthetic pathway in Escherichia coli, with a higher theoretical yield than mevalonate (MVA) pathway. However, due to lack of information about the regulation of MEP pathway, only engineering MEP pathway in E. coli achieved limited improvement of heterologous isoprenoid production. We used exogenous MEP pathway genes to improve MEP pathway in E. coli and optimized the glucose feeding to release the potential of MEP pathway. The results demonstrate that co-expression of dxs2 from Streptomyces avermitilis and idi from Bacillus subtilis can increase amorphadiene production with 12.2-fold compared with the wild-type strain in shake flask fermentation. Then we established a high-cell density fermentation process for the engineered strain, and found that the phase from 24 to 72 h is important for product biosynthesis. The optimization of glucose feeding rate during 24 to 72 h significantly improved product accumulation, which was improved from 2.5 to 4.85 g/L, within the same process time. Considering the attenuation of strain metabolism after 72 h, this study further modulated the glucose feeding rate during exponential phase to control strain growth and the amorphadiene yield eventually reached to 6.1 g/L. These results provided useful information to develop engineered E. coli for isoprenoid production through MEP pathway engineering.
Bacillus subtilis
;
Biosynthetic Pathways
;
Culture Media
;
chemistry
;
Erythritol
;
analogs & derivatives
;
metabolism
;
Escherichia coli
;
genetics
;
metabolism
;
Genetic Engineering
;
Glucose
;
chemistry
;
Industrial Microbiology
;
Sesquiterpenes
;
metabolism
;
Sugar Phosphates
;
metabolism
;
Terpenes
;
metabolism
6.Effects of the ITPR1 gene overexpression on Ca²⁺ concentration, lipid content and calcium transport-related genes in duck uterine epithelial cells.
Minfang YOU ; Yuanyu QIN ; Yiyu ZHANG ; Chaomei LIAO ; Guanghui TAN ; Jiezhang LI ; Wangui LI
Chinese Journal of Biotechnology 2021;37(7):2443-2452
Inositol 1,4,5-trisphosphate receptor 1 (ITPR1) is an important intracellular channel for releasing Ca²⁺. In order to investigate the effects of the ITPR1 overexpression on Ca²⁺ concentration and lipid content in duck uterine epithelial cells and its effects on calcium transport-related genes, the structural domain of ITPR1 gene of duck was cloned into an eukaryotic expression vector and transfected into duck uterine epithelial cells. The overexpression of the ITPR1 gene, the concentration of Ca²⁺, the lipid content, and the expression of other 6 calcium transport-related genes was determined. The results showed that the concentration of Ca²⁺ in uterine epithelial cells was significantly reduced after transfection (P<0.05), the triglyceride content was significantly increased (P<0.01), and the high-density lipoprotein content was significantly decreased (P<0.01). The correlation analysis results showed that the overexpression of the C-terminal half of the ITPR1 gene was significantly positively correlated with the total cholesterol content (P<0.01), which was significantly positively correlated with the low-density lipoprotein content (P<0.05). The overexpression of the N-terminal half of the ITPR1 gene was significantly positively correlated with the triglyceride content (P<0.01), which was significantly negatively correlated with the concentration of Ca²⁺ (P<0.05). RT-qPCR results of 6 calcium transport-related genes showed that the overexpression of the C-terminal half of the ITPR1 gene significantly inhibited the expression of the IP3R2, VDAC2 and CAV1 genes, and the overexpression of the N-terminal half of the ITPR1 gene significantly promoted the expression of the IP3R3 and CACNA2D1 genes. In conclusion, the ITPR1 gene overexpression can promote Ca²⁺ release in duck uterus epithelial cells, promote the synthesis of triglyceride, low-density lipoprotein and cholesterol, and inhibit the production of high-density lipoprotein, and the ITPR1 gene overexpression affected the expression of all 6 calcium transport-related genes.
Animals
;
Calcium/metabolism*
;
Ducks/genetics*
;
Epithelial Cells
;
Female
;
Inositol
;
Inositol 1,4,5-Trisphosphate Receptors
;
Lipids
;
Uterus
7.Caffeine and 2-Aminoethoxydiphenyl Borate (2-APB) Have Different Ability to Inhibit Intracellular Calcium Mobilization in Pancreatic Acinar Cell.
Kyung Jin CHOI ; Kab Sung KIM ; Se Hoon KIM ; Dong Kwan KIM ; Hyung Seo PARK
The Korean Journal of Physiology and Pharmacology 2010;14(2):105-111
Inositol 1,4,5-trisphosphate receptors (InsP3Rs) modulate Ca2+ release from intracellular Ca2+ store and are extensively expressed in the membrane of endoplasmic/sarcoplasmic reticulum and Golgi. Although caffeine and 2-aminoethoxydiphenyl borate (2-APB) have been widely used to block InsP3Rs, the use of these is limited due to their multiple actions. In the present study, we examined and compared the ability of caffeine and 2-APB as a blocker of Ca2+ release from intracellular Ca2+ stores and Ca2+ entry through store-operated Ca2+ (SOC) channel in the mouse pancreatic acinar cell. Caffeine did not block the Ca2+ entry, but significantly inhibited carbamylcholine (CCh)-induced Ca2+ release. In contrast, 2-APB did not block CCh-induced Ca2+ release, but remarkably blocked SOC-mediated Ca2+ entry at lower concentrations. In permeabilized acinar cell, caffeine had an inhibitory effect on InsP3-induced Ca2+ release, but 2-APB at lower concentration, which effectively blocked Ca2+ entry, had no inhibitory action. At higher concentrations, 2-APB has multiple paradoxical effects including inhibition of InsP3-induced Ca2+ release and direct stimulation of Ca2+ release. Based on the results, we concluded that caffeine is useful as an inhibitor of InsP3R, and 2-APB at lower concentration is considered a blocker of Ca2+ entry through SOC channels in the pancreatic acinar cell.
Acinar Cells
;
Animals
;
Boron Compounds
;
Caffeine
;
Calcium
;
Carbachol
;
Inositol 1,4,5-Trisphosphate Receptors
;
Membranes
;
Mice
;
Reticulum
8.Pharmacological evidence that cromakalim inhibits Ca2+ release from intracellular stores in porcine coronary artery.
Byung Yong RHIM ; Sun Hwa HONG ; Chi Dae KIM ; Won Suk LEE ; Ki Whan HONG
The Korean Journal of Physiology and Pharmacology 1997;1(1):27-34
In the present study, it was aimed to further identify the intracellular action mechanism of cromakalim and levcromakaliin in the porcine coronary artery. In intact porcine coronary arterial strips loaded with fura-2/AM, acetylcholine caused an increase in intracellular free Ca2+ ((Ca2+)-i) in association with a contraction in a concentration-dependent manner. Cromakalim (1 micrometer) caused a reduction in acetylcholine-induced increased (Ca2+)-i not only in the normal physiological salt solution (PSS) but also in Ca2+ -free PSS (containing 1mM EGTA). In the skinned strips prepared by exposure of tissue to 20 micrometer beta-escin, inositol 1,4,5-trisphosphate (IP-3) evoked an increase in (Ca2+)-i but it was without effect on the intact strips. The IP-3-induced increase in (Ca2+)-i was inhibited by cromakalim by 78% and levcromakalim by 59% (1 micrometer, each). Pretreatment with glibenclamide (a blocker of ATP-sensitive K+ channels, 10 micrometer and apamin (a blocker of small conductance Ca2+/-activated K+ channels, 1 micrometer strongly blocked the effect of cromakalim and levcromakalim. However, charybdotoxin (a blocker of large conductance Ca2+ -activated K+ channels, 1-micrometer) was without effect. In addition, cromakalim inhibited the GTP-gamma-S (100 micrometer, nonhydrolysable analogue of GTP)-induced increase in (Ca2+)-i. Based on these results, it is suggested that cromakalim and levcromakalim exert a potent vasorelaxation, in part, by acting on the K+ channels of the intracellular sites (e.g., sarcoplasmic reticulum membrane), thereby, resulting in decrease in release of Ca2+ from the intracellular storage site.
Acetylcholine
;
Apamin
;
Charybdotoxin
;
Coronary Vessels*
;
Cromakalim*
;
Escin
;
Glyburide
;
Inositol 1,4,5-Trisphosphate
;
Sarcoplasmic Reticulum
;
Skin
;
Vasodilation
9.Diagnosis of a patient with Spinocerebellar ataxia type 29 due to a novel variant of ITPR1 gene.
Ya Nan ZHI ; Jiao LIU ; Cheng ZHEN ; Juan LI ; Fangna WANG ; Yan LUO ; Pingping ZHANG ; Mingming ZHANG ; Yali LI
Chinese Journal of Medical Genetics 2023;40(1):76-80
OBJECTIVE:
To explore the clinical and genetic characteristics of a child with spinocerebellar ataxia type 29 (SCA29) due to novel variant of the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) gene.
METHODS:
The child was subjected high-throughput sequencing, and candidate variant was verified by Sanger sequencing of his family members.
RESULTS:
The child was found to harbor a c.800C>T (p.T267M) variant of the ITPR1 gene, which was not found in his parents and their fetus. The variant has occurred in a hotspot of the ITPR1 gene variants and was unreported before in China. Based on his clinical and genetic characteristics, the child was diagnosed with SCA29.
CONCLUSION
The novel heterozygous c.800C>T (p.T267M) of the ITPR1 gene probably underlay the SCA29 in this child.
Child
;
Humans
;
Family
;
Inositol 1,4,5-Trisphosphate Receptors/genetics*
;
Mutation
;
Spinocerebellar Ataxias/genetics*
;
Spinocerebellar Degenerations
10.Critical Care Paper Review 2012.
Tuberculosis and Respiratory Diseases 2012;73(1):1-10
Care of patients with sepsis has improved over the last decade. However, in the recent two years, there was no significant progress in the development of a new drug for critically ill patients. In January 2011, it was announced that the worldwide phase 3 randomized trial of a novel anti-Toll-like receptor-4 compound, eritoran tetrasodium, had failed to demonstrate an improvement in the mortality of patients with severe sepsis. In October 2011, Xigris (drotrecogin alfa, a recombinant activated protein C) was withdrawn from the market following the failure of its worldwide trial that had attempted to demonstrate improved outcome. These announcements were disappointing. The recent failure of 2 promising drugs to further reduce mortality suggests that new approaches are needed. A study was published showing that sepsis can be associated to a state of immunosuppression and loss of immune function in human. However, the timing, incidence, and nature of the immunosuppression remain poorly characterized, especially in humans. This emphasizes the need for a better understanding of sepsis as well as new therapeutic strategies. Many clinical experiences of the extracorporeal membrane oxygenator (ECMO) treatment for adult acute respiratory distress syndrome (ARDS) patients, which is caused by the H1N1 influenza A virus, were reported. The use of ECMO in severe respiratory failure, particularly in the treatment of adult ARDS, is occurring more commonly.
Adult
;
Critical Care
;
Critical Illness
;
Disaccharides
;
Extracorporeal Membrane Oxygenation
;
Humans
;
Immunosuppression
;
Incidence
;
Influenza A virus
;
Oxygenators, Membrane
;
Protein C
;
Recombinant Proteins
;
Respiratory Distress Syndrome, Adult
;
Respiratory Insufficiency
;
Sepsis
;
Sugar Phosphates