2.Increased Burst Firing in Substantia Nigra Pars Reticulata Neurons and Enhanced Response to Selective D2 Agonist in Hemiparkinsonian Rats After Repeated Administration of Apomorphine.
Jung Il LEE ; Hee Jung SHIN ; Do Hyun NAM ; Jong Soo KIM ; Seung Chyul HONG ; Hyung Jin SHIN ; Kwan PARK ; Whan EOH ; Jong Hyun KIM ; Won Yong LEE
Journal of Korean Medical Science 2001;16(5):636-642
Intermittent administrations of dopaminergic agents in hemiparkinsonian rat enhances the behavioral response to subsequent administration of the drugs. This phenomenon is known as "priming" and thought as comparable to drug-induced dyskinesia in patients with Parkinson's disease. We investigated the behavioral and electrophysiological changes in 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats after repeated administrations of apomorphine. Administration of apomorphine (0.32 mg/kg, intraperitoneal, i.p.) twice daily for 6 days enhanced the rotation induced by apomorphine from 341 turns/hour at the beginning to 755 turns/hr at the end. At the same time, the response to selective D2 agonist quinpirole (0.26 mg/kg, i.p.) was also enhanced from 203 to 555 turns/hr. Extracellular single unit recording revealed no significant difference in the basal firing rates of substantia nigra pars reticulata (SNr) neurons between the ipsilateral and contralateral side of the 6-OHDA lesion regardless of the repeated administrations of apomorphine. In SNr of the lesion side, the units with burst firing pattern were found more frequently after repeated administrations of apomorphine and the suppressive effect of quinpirole on the firing rate was enhanced. These findings suggest that the increased percentage of the burst units is the important electrophysiological change in the development of enhanced response to selective D2 agonist.
Animal
;
Apomorphine/*pharmacology
;
Dopamine Agonists/*pharmacology
;
MPTP Poisoning/physiopathology
;
Male
;
Oxidopamine/toxicity
;
Parkinsonian Disorders/*physiopathology
;
Quinpirole/pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Dopamine D2/*drug effects
;
Substantia Nigra/*drug effects/physiology
3.The selective 5-HT1A receptor antagonist WAY-100635 inhibits neuronal activity of the ventromedial prefrontal cortex in a rodent model of Parkinson's disease.
Jian CAO ; Jian LIU ; Qiao-Jun ZHANG ; Tao WANG ; Shuang WANG ; Ling-Na HAN ; Qiang LI
Neuroscience Bulletin 2007;23(6):315-322
OBJECTIVEThe ventral part of the medial prefrontal cortex (mPFC) plays an important role in initiation and control of voluntary movement, mood and cognition. However, after the degeneration of the nigrostriatal pathway, the neuronal activity of the ventral mPFC and the role of serotonin(1A) (5-hydroxytryptamine, 5-HT(1A)) receptors in the firing of the neurons are still unknown. The present study is to investigate the change of neuronal activity in the ventral mPFC and the effect of systemic administration of the selective 5-HT(1A) receptor antagonist WAY-100635 on the activity of the neurons in normal and 6-hydroxydopamine (6-OHDA)-lesioned rats.
METHODSSingle unit responses were recorded extracellularly with glass microelectrodes from ventral mPFC neurons in normal rats and 6-OHDA unilaterally lesioned rats in vivo.
RESULTS6-OHDA lesion of the substantia nigra pars compacta (SNc) significantly increased the firing rate with no change in the firing pattern of neurons of the ventral mPFC in rats. Systemic administration of WAY-100635 (0.1 mg/kg, i.v.) did not change the mean firing rate and firing pattern of ventral mPFC neurons in normal rats. In contrast, WAY-100635 significantly decreased the mean firing rate of the neurons in rats with 6-OHDA lesion of the SNc.
CONCLUSIONThese data suggest that the degeneration of the nigrostriatal pathway results in an increase of neuronal activity of ventral mPFC and dysfunction of 5-HT(1A) receptor.
Action Potentials ; Animals ; Disease Models, Animal ; Male ; Neostriatum ; physiology ; Neural Pathways ; drug effects ; physiology ; physiopathology ; Neurons ; drug effects ; physiology ; Parkinson Disease ; physiopathology ; Piperazines ; pharmacology ; Prefrontal Cortex ; cytology ; drug effects ; physiology ; Pyridines ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptor, Serotonin, 5-HT1A ; metabolism ; Serotonin 5-HT1 Receptor Antagonists ; Serotonin Antagonists ; pharmacology ; Substantia Nigra ; physiology
4.Copper (Cu2+) induces degeneration of dopaminergic neurons in the nigrostriatal system of rats.
Wen-Ran YU ; Hong JIANG ; Jun WANG ; Jun-Xia XIE
Neuroscience Bulletin 2008;24(2):73-78
OBJECTIVETo study the effects of intranigral injection of different doses of CuSO4.5H2O on dopaminergic neuron in the nigrostriatal system of rats.
METHODSWistar rats were divided into four groups, including control group, 10 nmol, 50 nmol and 200 nmol copper injected into left substantia nigra (SN) groups. Seven days after the intranigral injection of copper, dopamine (DA) contents in the striatum (Str) were measured by high performance lipid chromotophotography (HPLC); the density of tyrosine hydroxylase (TH) positive axons in the Str was measured by TH staining method; TH and Caspase-3 mRNA expression in the SN were measured by semi-quantitative RT-PCR. We detected the activity of superoxide dismutase (SOD) in the lesioned midbrain of rats using biochemical methods.
RESULTSDA and its metabolites contents had no significant difference between control group and low dose (10 nmol) copper group. But from 50 nmol copper group, DA contents in the lesioned sides were reduced with the increase in the copper doses injected, showing a significant linear correlation (F = 34.16, P < 0.01). In the 50 nmol copper group, TH positive axons in the Str decreased compared with those of the control and unlesioned sides (F = 121.9, P < 0.01). In the 50 nmol copper group, TH mRNA expression decreased (t = 3.12, P < 0.01) while Caspase-3 mRNA expression increased (t = 8.96, P < 0.01) in the SN compared with the control. SOD activity decreased in the midbrain of rats treated with 50 nmol copper compared with that of the control (t = 2.33, P < 0.01).
CONCLUSIONCopper could induce damage of dopaminergic neurons in the SN of rats through destroying antioxidant defenses and promoting apoptosis.
Animals ; Apoptosis ; drug effects ; physiology ; Axons ; drug effects ; metabolism ; pathology ; Caspase 3 ; drug effects ; genetics ; metabolism ; Copper ; toxicity ; Corpus Striatum ; drug effects ; metabolism ; pathology ; Dopamine ; metabolism ; Dose-Response Relationship, Drug ; Male ; Nerve Degeneration ; chemically induced ; metabolism ; pathology ; Neural Pathways ; drug effects ; metabolism ; pathology ; Neurons ; drug effects ; metabolism ; pathology ; Neurotoxins ; toxicity ; Oxidative Stress ; drug effects ; physiology ; Parkinsonian Disorders ; chemically induced ; metabolism ; physiopathology ; RNA, Messenger ; drug effects ; metabolism ; Rats ; Rats, Wistar ; Substantia Nigra ; drug effects ; metabolism ; pathology ; Superoxide Dismutase ; drug effects ; genetics ; metabolism ; Superoxide Dismutase-1 ; Tyrosine 3-Monooxygenase ; drug effects ; genetics ; metabolism ; Wallerian Degeneration ; chemically induced ; metabolism ; pathology
5.Thrombin-induced microglial activation contributes to the degeneration of nigral dopaminergic neurons in vivo.
Cheng-Fang HUANG ; Gang LI ; Rong MA ; Sheng-Gang SUN ; Jian-Guo CHEN
Neuroscience Bulletin 2008;24(2):66-72
OBJECTIVETo evaluate the role of thrombin-activated microglia in the neurodegeneration of nigral dopaminergic neurons in the rat substantia nigra (SN) in vivo.
METHODSAfter stereotaxic thrombin injection into unilateral SN of rats, immunostaining, reverse transcription polymerase chain reaction (RT-PCR) and biochemical methods were used to observe tyrosine hydroxylase (TH) immunoreactive positive cells, microglia activation, nitric oxide (NO) amount and inducible nitric-oxide synthase (iNOS) expression.
RESULTS(1) Selective damage to dopaminergic neurons was produced after thrombin injection, which was evidenced by loss of TH immunostaining in time-dependent manner; (2) Strong microglial activation was observed in the SN; (3) RT-PCR demonstrated the early and transient expression of neurotoxic factors iNOS mRNA in the SN. Immunofluorescence results found that thrombin induced expression of iNOS in microglia. The NO production in the thrombin-injected rats was significantly higher than that of controls (P < 0.05).
CONCLUSIONThrombin intranigral injection can injure the dopaminergic neurons in the SN. Thrombin-induced microglia activation precedes dopaminergic neuron degeneration, which suggest that activation of microglia and release of NO may play important roles in dopaminergic neuronal death in the SN.
Animals ; Disease Progression ; Dopamine ; biosynthesis ; Encephalitis ; chemically induced ; metabolism ; physiopathology ; Female ; Gliosis ; chemically induced ; metabolism ; physiopathology ; Immunohistochemistry ; Inflammation Mediators ; toxicity ; Injections ; Microglia ; drug effects ; metabolism ; Nerve Degeneration ; chemically induced ; metabolism ; physiopathology ; Neurons ; drug effects ; metabolism ; pathology ; Nitric Oxide ; biosynthesis ; Nitric Oxide Synthase Type II ; drug effects ; metabolism ; Oxidative Stress ; drug effects ; physiology ; Parkinsonian Disorders ; chemically induced ; metabolism ; physiopathology ; RNA, Messenger ; drug effects ; metabolism ; Rats ; Rats, Sprague-Dawley ; Reverse Transcriptase Polymerase Chain Reaction ; Substantia Nigra ; drug effects ; metabolism ; physiopathology ; Thrombin ; toxicity ; Time Factors ; Tyrosine 3-Monooxygenase ; drug effects ; genetics ; metabolism ; Up-Regulation ; drug effects ; physiology
6.Triptolide protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats: implication for immunosuppressive therapy in Parkinson's disease.
Jun-Peng GAO ; Shan SUN ; Wen-Wei LI ; Yi-Ping CHEN ; Ding-Fang CAI
Neuroscience Bulletin 2008;24(3):133-142
OBJECTIVENeuroinflammation with microglial activation has been implicated to have a strong association with the progressive dopaminergic neuronal loss in Parkinson's disease (PD). The present study was undertaken to evaluate the activation profile of microglia in 1-methyl-4-phenyl pyridinium (MPP+)-induced hemiparkinsonian rats. Triptolide, a potent immunosuppressant and microglia inhibitor, was then examined for its efficacy in protecting dopaminergic neurons from injury and ameliorating behavioral disabilities induced by MPP+.
METHODSThe rat model of PD was established by intranigral microinjection of MPP+. At baseline and on day 1, 3, 7, 14, 21 following MPP+ injection, the degree of microglial activation was examined by detecting the immunodensity of OX-42 (microglia marker) in the substantia nigra (SN). The number of viable dopaminergic neurons was determined by measuring tyrosine hydroxylase (TH) positive neurons in the SN. Behavioral performances were evaluated by counting the number of rotations induced by apomorphine, calculating scores of forelimb akinesia and vibrissae-elicited forelimb placing asymmetry.
RESULTSIntranigral injection of MPP+ resulted in robust activation of microglia, progressive depletion of dopaminergic neurons, and ongoing aggravation of behavioral disabilities in rats. Triptolide significantly inhibited microglial activation, partially prevented dopaminergic cells from death and improved behavioral performances.
CONCLUSIONThese data demonstrated for the first time a neuroprotective effect of triptolide on dopaminergic neurons in MPP+-induced hemiparkinsonian rats. The protective effect of triptolide may, at least partially, be related to the inhibition of MPP+-induced microglial activation. Our results lend strong support to the use of immunosuppressive agents in the management of PD.
1-Methyl-4-phenylpyridinium ; antagonists & inhibitors ; toxicity ; Animals ; Biomarkers ; metabolism ; CD11b Antigen ; analysis ; metabolism ; Cell Count ; Cell Survival ; drug effects ; physiology ; Disability Evaluation ; Diterpenes ; pharmacology ; therapeutic use ; Dopamine ; metabolism ; Encephalitis ; drug therapy ; immunology ; prevention & control ; Epoxy Compounds ; pharmacology ; therapeutic use ; Gliosis ; drug therapy ; immunology ; prevention & control ; Herbicides ; antagonists & inhibitors ; toxicity ; Immunosuppression ; methods ; Immunosuppressive Agents ; pharmacology ; therapeutic use ; Male ; Microglia ; drug effects ; immunology ; Neurons ; drug effects ; immunology ; pathology ; Parkinsonian Disorders ; drug therapy ; immunology ; physiopathology ; Phenanthrenes ; pharmacology ; therapeutic use ; Rats ; Rats, Sprague-Dawley ; Substantia Nigra ; drug effects ; immunology ; physiopathology ; Treatment Outcome ; Tyrosine 3-Monooxygenase ; analysis ; metabolism