1.Ablation of macrophage transcriptional factor FoxO1 protects against ischemia-reperfusion injury-induced acute kidney injury.
Yao HE ; Xue YANG ; Chenyu ZHANG ; Min DENG ; Bin TU ; Qian LIU ; Jiaying CAI ; Ying ZHANG ; Li SU ; Zhiwen YANG ; Hongfeng XU ; Zhongyuan ZHENG ; Qun MA ; Xi WANG ; Xuejun LI ; Linlin LI ; Long ZHANG ; Yongzhuo HUANG ; Lu TIE
Acta Pharmaceutica Sinica B 2025;15(6):3107-3124
Acute kidney injury (AKI) has high morbidity and mortality, but effective clinical drugs and management are lacking. Previous studies have suggested that macrophages play a crucial role in the inflammatory response to AKI and may serve as potential therapeutic targets. Emerging evidence has highlighted the importance of forkhead box protein O1 (FoxO1) in mediating macrophage activation and polarization in various diseases, but the specific mechanisms by which FoxO1 regulates macrophages during AKI remain unclear. The present study aimed to investigate the role of FoxO1 in macrophages in the pathogenesis of AKI. We observed a significant upregulation of FoxO1 in kidney macrophages following ischemia-reperfusion (I/R) injury. Additionally, our findings demonstrated that the administration of FoxO1 inhibitor AS1842856-encapsulated liposome (AS-Lipo), mainly acting on macrophages, effectively mitigated renal injury induced by I/R injury in mice. By generating myeloid-specific FoxO1-knockout mice, we further observed that the deficiency of FoxO1 in myeloid cells protected against I/R injury-induced AKI. Furthermore, our study provided evidence of FoxO1's pivotal role in macrophage chemotaxis, inflammation, and migration. Moreover, the impact of FoxO1 on the regulation of macrophage migration was mediated through RhoA guanine nucleotide exchange factor 1 (ARHGEF1), indicating that ARHGEF1 may serve as a potential intermediary between FoxO1 and the activity of the RhoA pathway. Consequently, our findings propose that FoxO1 plays a crucial role as a mediator and biomarker in the context of AKI. Targeting macrophage FoxO1 pharmacologically could potentially offer a promising therapeutic approach for AKI.
2.Influence of Methylenetetrahydrofolate Reductase C677T Polymorphism on High-Dose Methotrexate Toxicity in Pediatric Mature B-cell lymphoma Patients
Jia-Qian XU ; Juan WANG ; Su-Ying LU ; Yan-Peng WU ; Lan-Ying GUO ; Bo-Yun SHI ; Fei-Fei SUN ; Jun-Ting HUANG ; Jia ZHU ; Zi-Jun ZHEN ; Xiao-Fei SUN ; Yi-Zhuo ZHANG
Journal of Experimental Hematology 2024;32(6):1733-1737
Objective:To investigate the effect of genetic polymorphism of MTHFR C677T (rs1801133) on methotrexate (MTX) related toxicity in pediatric mature B-cell lymphoma patients. Methods:Fifty-eight intermediate and high risk patients under 18 years of age with mature B-cell lymphoma who received 5 g/m2 MTX (24 h intravenous infusion) in Sun Yat-sen University Cancer Center from August 2014 to December 2021 were included,and their toxicity of high-dose MTX (HD-MTX) were monitored and analyzed. Results:Among the 58 pediatric patients,the number of CC,CT,and TT genotypes for MTHFR C677T was 33,19 and 6,respectively. A total of 101 courses of HD-MTX therapy were counted,of which plasma MTX level>0.2 μmol/L at 48 h post-MTX infusion were observed in 35 courses,≤0.2 μmol/L in 66 courses. Inter-group comparison showed that plasma MTX level>0.2 μmol/L at 48 h post-MTX infusion increased the risk of developing oral mucositis (P<0.05). Compared with wild-type (CC genotype),patients in the mutant group (CT+TT genotype) were more likely to develop myelosuppression,manifested as anemia,leucopenia,neutropenia and thrombocytopenia. However,plasma MTX level at 48 h was not associated with MTHFR C677T gene polymorphism. Conclusion:The risk of developing oral mucositis in children with mature B-cell lymphoma is associated with plasma MTX concentration. Polymorphism of MTHFR C677T gene is not related to plasma MTX concentration in children with mature B-cell lymphoma,but is related to grade Ⅲ to Ⅳ hematological toxicity.
3.Visual analysis of the impact of T cells on rheumatoid arthritis in the past decade based on multiple analysis methods
Xiaojun SU ; Wenju ZHU ; Huan WANG ; Qian HE ; Qiang BAO ; Ying GUO ; Yihong KE ; Haili SHEN ; Zhiming ZHANG
China Modern Doctor 2024;62(12):1-8
Objective Through a multi-software visual analysis of the literature on the influence of T cells on rheumatoid arthritis(RA)in recent ten years,the research hotspot and frontier development in this field were summarized.Methods The Chinese and English literature on the influence of T cells on RA from 2012 to 2022 years was retrieved from CNKI and Web of Science database as the research object.CiteSpace and VOSviewer software were used to analyze the number of publications,authors and keywords.Results 519 articles in Chinese and 861 in English were retrieved.The results showed that the number of articles in Chinese increased slowly from 2020 to 2022 years,while the overall trend in English was stable.Keyword analysis shows that it is predicted that future research in this field will focus on the pathogenesis of T cells in RA,the mechanism of bone destruction in RA,disease activity,oxidative stress.Conclusion The influence of T cells on RA has attracted much attention in the past,present and future,and has great research value.However,due to the differences in research priorities at home and abroad,the teams should interact positively and communicate with each other to reveal the internal mechanism of RA and provide theoretical basis for targeted therapy.
4.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
6.Causal association between depression and stress urinary incontinence:A two-sample bidirectional Mendelian randomization study
Cheng-Xiao JIANG ; Wei-Qi YIN ; Jing-Jing XU ; Ying-Jiao SHI ; Li WANG ; Zhi-Bo ZHENG ; Rui SU ; Qin-Bo HU ; Jun-Hai QIAN ; Shu-Ben SUN
National Journal of Andrology 2024;30(3):217-223
Objective:To investigate the causal correlation between depression and stress urinary incontinence(SUI)using Mendelian randomization(MR)analysis.Methods:We searched the FinnGen Consortium database for genome-wide association studies(GWAS)on depression and obtained 23 424 case samples and 192 220 control samples,with the GWAS data on SUI provided by the UK Biobank,including 4 340 case samples and 458 670 control samples.We investigated the correlation between depression and SUI based on the depression data collected from the Psychiatric Genomics Consortium(PGC).We employed inverse-variance weighting as the main method for the MR study,and performed sensitivity analysis to verify the accuracy and stability of the findings.Results:Analysis of the data from the UK Biobank and FinnGen Consortium showed that depression was significantly correlated with an increased risk of SUI(P=0.005),but not SUI with the risk of depression(P=0.927).And analysis of the PGC data verified the correlation of depression with the increased risk of SUI(P=0.043).Conclusion:Depression is associated with an increased risk of SUI,while SUI does not increase the risk of depression.
7.Mechanism of Colquhounia Root Tablets in inhibiting osteoclast differentiation based on HSP90 target modulation.
Pei-Ping CHEN ; Qian WANG ; Feng-Yu HUANG ; Xiang-Ying KONG ; Na LIN ; Xiao-Hui SU
China Journal of Chinese Materia Medica 2024;49(23):6389-6398
This study aimed to investigate the potential role of Colquhounia Root Tablets against bone destruction in rheumatoid arthritis(RA) and its molecular mechanism. The study used ultra-performance liquid chromatography-mass spectrometry to analyze the major components of Colquhounia Root Tablets and predicted its candidate target gene set based on the major components. The key targets of RA bone destruction were obtained through GeneCards and the Database of Genetics and Medical Literature(OMIM), protein-protein interaction(PPI) network was constructed, and the key targets were identified by topological analysis. The molecular mechanism of Colquhounia Root Tablets against RA bone destruction was further revealed using Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis. The effects of Colquhounia Root Tablets on macrophage viability was assessed by MTS assay and screened for non-toxic concentrations. A model of receptor activator of nuclear factor-κB(RANKL) induced osteoclast differentiation in vitro was constructed. Colquhounia Root Tablets were used to observe the formation and differentiation of osteoclasts by tartrate-resistant acid phosphatase(TRAP) staining and fibrous actin(F-actin) staining, and the effects of Colquhounia Root Tablets on the changes of core target proteins in the osteoclast differentiation system were detected by immunofluorescence and Western blot. The results showed that the main components of Colquhounia Root Tablets included 14 compounds such as triptolide, celastrol, and triptophenolide. Further network analysis revealed that heat-shock protein 90(HSP90) was the key target gene of Colquhounia Root Tablets for anti-RA bone destruction. TRAP staining and F-actin staining showed that the number and area of TRAP-positive polymorphonuclear cells, as well as actin rings, were reduced in a dose-dependent manner after the intervention of Colquhounia Root Tablets(P<0.01). Western blot results showed that the expression of HSP90 protein was significantly reduced after intervention with Colquhounia Root Tablets at 20 and 40 μg·mL~(-1)(P<0.01); Colquhounia Root Tablets at 10 μg·mL~(-1) could significantly decrease the expression of necrosis factor receptor associated molecule 6(TRAF6) and nuclear factor of activated T cells 1(NFATc1) proteins(P<0.01); moreover, all doses of Colquhounia Root Tablets significantly reduced the expression of osteoclast differentiation marker proteins matrix metalloproteinase 9(MMP9) and cathepsin K(CTSK)(P<0.01).Immunofluorescence results further confirmed that Colquhounia Root Tablets significantly inhibited HSP90 and CTSK levels, as well as NFATc1 activation in osteoblasts. In conclusion, the present study confirmed that Colquhounia Root Tablets may inhibit RANKL-induced osteoclast differentiation by regulating the key target of HSP90, thus exerting an anti-RA bone destruction effect, which will provide a new idea for Colquhounia Root Tablets to prevent and treat bone destruction in rheumatoid arthritis.
Osteoclasts/metabolism*
;
Mice
;
Animals
;
Cell Differentiation/drug effects*
;
HSP90 Heat-Shock Proteins/genetics*
;
Drugs, Chinese Herbal/chemistry*
;
Plant Roots/chemistry*
;
Humans
;
Arthritis, Rheumatoid/physiopathology*
;
Protein Interaction Maps/drug effects*
8.A consensus on the management of allergy in kindergartens and primary schools
Chinese Journal of School Health 2023;44(2):167-172
Abstract
Allergic diseases can occur in all systems of the body, covering the whole life cycle, from children to adults and to old age, can be lifelong onset and even fatal in severe cases. Children account for the largest proportion of the victims of allergic disease, Children s allergies start from scratch, ranging from mild to severe, from less to more, from single to multiple systems and systemic performance, so the prevention and treatment of allergic diseases in children is of great importance, which can not only prevent high risk allergic conditions from developing into allergic diseases, but also further block the process of allergy. At present, there is no consensus on the management system of allergic children in kindergartens and primary schools. The "Consensus on Allergy Management and Prevention in Kindergartens and Primary Schools", which includes the organizational structure, system construction and management of allergic children, provides evidence informed recommendations for the long term comprehensive management of allergic children in kindergartens and primary schools, and provides a basis for the establishment of the prevention system for allergic children.
9.The Brain Structure Volume Estimation Based on Synthetic MRI in Pediatric Acute Lymphoblastic Leukemia
Wei-feng HOU ; Shu SU ; Ying-qian CHEN ; Long QIAN ; Yan-lai TANG ; Li-bin HUANG ; Zhi-yun YANG ; Li-ping LIN
Journal of Sun Yat-sen University(Medical Sciences) 2023;44(2):271-276
ObjectiveCentral nervous system (CNS) infiltration commonly occurs in children with acute lymphoblastic leukemia (ALL). Early subclinical CNS infiltration in pediatric ALL is hard to detect with conventional methods. This study aimed to investigate the changes of brain structure volume parameters based on Synthetic MRI (SyMRI) in pediatric ALL without clinically diagnosed CNS infiltration. MethodsThirty-six ALL and twenty-nine typically developing (TD) children were prospectively collected and all underwent SyMRI. The Synthetic MR software was used to obtain brain volumetric parameters including total white matter volume (WMV), gray matter volume (GMV), cerebrospinal fluid (CSF) volume, etc. and their within-group differences were assessed by analysis of covariance. The Spearman correlation analysis was used to examine the correlation between biological characteristics and statistically significant brain volume parameters. ResultsALL children showed increased CSF volume (PFDR-corrected = 0.009) and decreased GMV (PFDR-corrected = 0.027) when compared to TD children. We also found a moderately negative association between GMV/intracranial volume and risk classification in pediatric ALL (rs = -0.380, P = 0.022). ConclusionsPediatric ALL without clinically diagnosed CNS infiltration presented with accumulation of CSF and reduction of gray matter. The brain volumetric changes in subclinical CNS infiltration of pediatric ALL provides a new attempt for exploring the underlying mechanism and early detection of CNS infiltration in pediatric ALL.
10.Characterization of brain deactivations elicited by transient painful and tactile stimuli using functional MRI.
Xiu-Zhi WANG ; Ying-Chao SONG ; Qian SU ; Meng LIANG
Acta Physiologica Sinica 2023;75(4):521-528
The aim of the present study was to explore the specific pattern of brain deactivation elicited by painful stimuli, in contrast with that elicited by tactile stimuli. Functional magnetic resonance imaging (fMRI) data were collected from 62 healthy subjects under painful and tactile stimuli with varying intensities. The brain deactivations under different conditions were identified using the general linear model. Two-way analysis of variance (ANOVA) was performed to test whether there was a significant interaction between perceived stimulus intensity (factor 1: high intensity, low intensity) and stimulus modality (factor 2: pain, touch) on the brain deactivations. The results showed that there were significant interactions between stimulus intensity and stimulus modality on the deactivations of left medial superior frontal gyrus, left middle occipital gyrus, left superior frontal gyrus and right middle occipital gyrus (P < 0.05, Cluster-level FWE). The deactivations induced by painful stimuli with low perceived intensity (β = -3.38 ± 0.52) were significantly stronger than those induced by painful stimuli with high perceived intensity (β = -1.22 ± 0.54) (P < 0.001), whereas the differences between the deactivations induced by tactile stimuli with different perceived intensities were not statistically significant. In addition, there were no significant differences between the deactivations elicited by painful and tactile stimuli with the same stimulus intensities. These results suggest that there is a specific relationship between the deactivations induced by painful stimuli in multiple brain regions (such as the left medial superior frontal gyrus) and the stimulus intensity, providing evidence for a deeper understanding of the brain mechanisms underlying pain perception.
Humans
;
Touch/physiology*
;
Physical Stimulation/methods*
;
Pain
;
Brain/physiology*
;
Magnetic Resonance Imaging/methods*
;
Brain Mapping


Result Analysis
Print
Save
E-mail