1.Effect evaluation of AIDS health education among college students in Dali area
Yunpeng SU ; Yuanying SHEN ; Mei HE ; Jizheng LIU ; Hongyuan LI
Chongqing Medicine 2014;(35):4774-4776
Objective To evaluate the effect of AIDS health education in university students to provide the theoretical basis for AIDS prevention in the young college students .Methods In order to know about the situation of awareness HIV/AIDS ,a general survey of HIV/AIDS related knowledge was conducted in freshmen of Dali college by self‐made questionnaire In December 2010 , then various forms of health education was took for college students ,such as theoretical study ,lecture and so on .Investigation a‐mong students once again ,and compared with the baseline survey results in December 2012 .Results The accuracy of HIV/AIDS health knowledge in the young college students after had health education was higher significantly than that before(P<0 .05);The score of AIDS elated problem have been weighted ,and awareness was defined as≥60 ;Before health education ,2 619 students knew about AIDS related knowledge ,872 students did not ,the average score was (64 .50 ± 10 .22) ,the total awareness rate was 75 .67% ;after the health education ,3 323 students know about AIDS related knowledge ,138 students did not ,the average score was (84 .94 ± 12 .68) ,the total awareness rate was 96 .01% .After continuing health education ,the total score was significantly increased (P<0 .01) .Conclusion The awareness rate of AIDS could be improved by health education in various forms and that was impor‐tant for the prevention of AIDS among college students .
2.Effect of paeoniflorin on oxidative stress and energy metabolism in mice with lipopolysaccharide (LPS)-induced brain injury.
Ling LIU ; Xiang-jun QIU ; Su-na HE ; Hui YANG ; Deng WANG ; Xue-mei YANG
China Journal of Chinese Materia Medica 2015;40(14):2871-2875
Paeoniflorin is the main active ingredient of Chinese herbaceous peony. This study is to investigate the protective effect of paeoniflorin (Pae) on acute brain damage induced by lipopolysaccharide (LPS) in mice. The mice were randomly assigned to the normal control, model control (LPS), as well as groups of paeoniflorin and lipopolysaccharide (Pae + LPS). Then the mice were administered intraperitioneally with normal saline or Pae (10, 30 mg · kg(-1)) once daily for 6 d. One hour after intrapertioneally treatment on the seventh day, each group were injected LPS (5 mg · kg(-1)) to establish the endotoxin lipopolysaccharide inflammation model except the normal group. The mice were sacrificed after 6 h and the brain homogenates were prepared and measured. The malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), hydrogen peroxide (H2O2), succinatedehydrogenase (SDH), Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase were dectected by the colorimetric method. The levels of HO-1 and Nrf2 protein in subcellular fractions of brain tissue were detected by Western blot. The results demonstrated that the administration with paeoniflorin reduced the levels of the MDA production; significantly increase the activities of antioxidant enzyme (SOD and GSH-PX). In addition, paeoniflorin could enhance the total antioxidant capacity, decrease the level of H2O2, and increase the activities of SDH, Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase. Furthermore, paeoniflorin can increase the expression of HO-1 and activate the nuclear transfer of Nrf2. Taking together, these findings suggest that paeoniflorin alleviate the acute inflammation in mice brain damage induced by LPS, which is related with its antioxidant effect and improvement of energy metabolism.
Animals
;
Energy Metabolism
;
drug effects
;
Glucosides
;
pharmacology
;
Heme Oxygenase-1
;
genetics
;
Lipopolysaccharides
;
pharmacology
;
Male
;
Membrane Proteins
;
genetics
;
Mice
;
Mice, Inbred BALB C
;
Monoterpenes
;
pharmacology
;
Oxidative Stress
;
drug effects
;
Sodium-Potassium-Exchanging ATPase
;
metabolism
4.The clinical characteristics and perioperative management of complicated placenta increta
Liuying ZHONG ; Dunjin CHEN ; Chunhong SU ; Fang HE ; Lin YU ; Mei ZHONG
The Journal of Practical Medicine 2016;32(17):2837-2840
Objective To study the clinical characteristicsand perioperative managementof complicated placenta increta, effectively reduce the maternal adverse perinatal outcomes. Methods Retrospective analysis 25 cases of complicated placenta increta between January 2013 and December 2015 in the Third Affiliated Hospital Of Guangzhou Medical University. Grouped into preoperative line 9 cases of ureteral catheter group and without catheter group 16 cases; Conventional hysterectomy group of 17 cases and the posterior hysterectomy group of 8 cases , compare the operation time , postpartum hemorrhage , blood transfusion amount , bladder injury or ureteral injury rate , rate of transferred to the ICU and hospital stay. Results 76% appear repeatedly painless vaginal bleeding during pregnancy , 56% appear bleeding before delivery. Prenatal diagnosis of 17 cases (68%). The preoperative line cystoscopy + bilateral retrograde ureteral catheter or after the posterior hysterectomy , shorter operation time , less postpartum hemorrhage , reduce blood transfusion volume , no urinary tract injury rate, transferred to the ICU rate is low, the difference was statistically significant (P < 0.05). Conclusions We should attach importance to repeated painless vaginal bleeding , improve prenatal diagnostic rate of complicated placenta increta. The perioperative managementis more comprehensive , effective and standard participation , preoperative ureteral catheter and the posterior hysterectomy can effectively reduce the maternal adverse perinatal outcomes.
5.Adrenomedullin reduces intracellular calcium concentration in cultured hippocampal neurons.
Shu-Mei JI ; Jian-Mei XUE ; Chuan WANG ; Su-Wen SU ; Rui-Rong HE
Acta Physiologica Sinica 2005;57(3):340-345
The effects of adrenomedullin (ADM) on intracellular calcium concentration ([Ca(2+)](i)) were investigated in cultured hippocampal neurons. Changes in [Ca(2+)](i) were detected by laser scanning confocal microscopy using Fluo 3-AM as the calcium fluorescent probe. [Ca(2+)](i) was represented by relative fluorescent intensity. The results showed that: (1) ADM (0.01-1.0 micromol/L) decreased the resting [Ca(2+)](i) in a concentration-dependent manner. (2) Calcitonin gene-related peptide receptor antagonist CGRP(8-37) significantly inhibited the effects of ADM. (3) ADM significantly reduced the increase in [Ca(2+)](i) induced by high K(+). (4) ADM markedly inhibited the inositol 1,4,5-trisphosphate (IP(3))-induced increase in [Ca(2+)](i), while did not influence ryanodine-evoked increase in [Ca(2+)](i). These results suggest that ADM reduces [Ca(2+)](i) in cultured hippocampal neurons through suppressing Ca(2+) release from IP(3)-sensitive stores. Although ADM does not alter resting Ca(2+) influx, it significantly suppresses Ca(2+) influx activated by high K(+). These effects may be partly mediated by CGRP receptors. ADM in the CNS may act as a cytoprotective factor in ischemic/hypoxic conditions.
Adrenomedullin
;
Animals
;
Animals, Newborn
;
Calcitonin Gene-Related Peptide
;
metabolism
;
Calcium
;
metabolism
;
Cells, Cultured
;
Embryo, Mammalian
;
Hippocampus
;
cytology
;
metabolism
;
Inositol 1,4,5-Trisphosphate
;
antagonists & inhibitors
;
Neurons
;
cytology
;
metabolism
;
Peptides
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Calcitonin Gene-Related Peptide
;
antagonists & inhibitors
;
metabolism
6.Repair of murine full skin loss with composite skin of collagen scaffold containing living cells.
Qing-he SU ; Min-jie YANG ; Hong-mei ZHOU
Chinese Journal of Burns 2003;19(6):358-360
OBJECTIVETo construct composite skin containing living cells and to observe its significance in the repair of full skin loss in mice.
METHODSThe dermal substitute was formed by culturing heterogeneous fibroblasts on the acellular chondrocyte collagen scaffold for 3 days, and then cultured on the epithelial membrane for another 10 days, to form the composite skin containing living cells. The composite skin was grafted onto full layer skin defect. The growth condition was observed and biopsies were harvested for histologic examination.
RESULTSBoth fibroblasts and stratified epithelium grew well in the collagen scaffold. The composite skin adhered tightly to wounds of the mice, with obvious vascularization one week after grafting. The grafts began to merge with the wound margin at 6 post operation weeks without obvious signs of rejection.
CONCLUSIONFull skin loss could be repaired by composite skin formed by acellular chondrocyte collagen scaffold as a skin substitute.
Animals ; Collagen ; Humans ; Mice ; Skin ; pathology ; Skin Transplantation ; methods ; Skin, Artificial ; Tissue Engineering
7.Carthamus tinctorius seeds–Taraxacum coreanum combination attenuates scopolamine-induced memory deficit through regulation of inflammatory response and cholinergic function
Mei Tong HE ; Yu-Su SHIN ; Hyun Young KIM ; Eun Ju CHO
Nutrition Research and Practice 2024;18(5):647-662
BACKGROUND/OBJECTIVES:
There is growing interest in herbal medicines for managing age-related diseases, such as Alzheimer's and Parkinson’s. Safflower seeds (Carthamus tinctorius L. seeds, CTS) and dandelions (Taraxacum coreanum, TC) are widely used to treat bone- or inflammation-related diseases in Oriental countries. This study investigated the protective effect of the CTS–TC combination on scopolamine (Sco)-induced memory deficits through inflammatory response and cholinergic function. Moreover, marker components such as serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid in the CTS–TC combination were analyzed for their potential benefits on memory function.MATERIALS/METHODS: Water extracts of CTS, TC, and the CTS–TC combination at various ratios (4:1, 1:1, and 1:4) (100 mg/kg) were orally administered to mice for 14 days. Sco (1 mg/kg) was intraperitoneally injected into the mice before each behavioral test. T-maze and novel object recognition tests were conducted to monitor behavioral changes after the treatment.Western blotting was performed to detect protein expression. In addition, the presence of 5 biomarkers, serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid, was analyzed using high-performance liquid chromatography (HPLC).
RESULTS:
Behavioral tests showed that the CTS–TC combination enhanced memory function in Sco-injected mice. Inflammation-related proteins (inducible nitric oxide synthase, cyclooxygenase-2, and glial fibrillary acidic protein) were downregulated after treatment with the CTS–TC combination. The acetylcholinesterase protein expression was also downregulated.HPLC analysis revealed that N-feruloylserotonin and chicoric acid were the predominant components, followed by N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin.
CONCLUSION
These findings suggest that the CTS–TC combination protects against Sco-induced memory deficits by inhibiting inflammatory responses and cholinergic dysfunction. N-feruloylserotonin and chicoric acid, along with N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin, might be biomarkers for the CTS–TC combination, and their effects on memory protection warrant further study.
8.Carthamus tinctorius seeds–Taraxacum coreanum combination attenuates scopolamine-induced memory deficit through regulation of inflammatory response and cholinergic function
Mei Tong HE ; Yu-Su SHIN ; Hyun Young KIM ; Eun Ju CHO
Nutrition Research and Practice 2024;18(5):647-662
BACKGROUND/OBJECTIVES:
There is growing interest in herbal medicines for managing age-related diseases, such as Alzheimer's and Parkinson’s. Safflower seeds (Carthamus tinctorius L. seeds, CTS) and dandelions (Taraxacum coreanum, TC) are widely used to treat bone- or inflammation-related diseases in Oriental countries. This study investigated the protective effect of the CTS–TC combination on scopolamine (Sco)-induced memory deficits through inflammatory response and cholinergic function. Moreover, marker components such as serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid in the CTS–TC combination were analyzed for their potential benefits on memory function.MATERIALS/METHODS: Water extracts of CTS, TC, and the CTS–TC combination at various ratios (4:1, 1:1, and 1:4) (100 mg/kg) were orally administered to mice for 14 days. Sco (1 mg/kg) was intraperitoneally injected into the mice before each behavioral test. T-maze and novel object recognition tests were conducted to monitor behavioral changes after the treatment.Western blotting was performed to detect protein expression. In addition, the presence of 5 biomarkers, serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid, was analyzed using high-performance liquid chromatography (HPLC).
RESULTS:
Behavioral tests showed that the CTS–TC combination enhanced memory function in Sco-injected mice. Inflammation-related proteins (inducible nitric oxide synthase, cyclooxygenase-2, and glial fibrillary acidic protein) were downregulated after treatment with the CTS–TC combination. The acetylcholinesterase protein expression was also downregulated.HPLC analysis revealed that N-feruloylserotonin and chicoric acid were the predominant components, followed by N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin.
CONCLUSION
These findings suggest that the CTS–TC combination protects against Sco-induced memory deficits by inhibiting inflammatory responses and cholinergic dysfunction. N-feruloylserotonin and chicoric acid, along with N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin, might be biomarkers for the CTS–TC combination, and their effects on memory protection warrant further study.
9.Carthamus tinctorius seeds–Taraxacum coreanum combination attenuates scopolamine-induced memory deficit through regulation of inflammatory response and cholinergic function
Mei Tong HE ; Yu-Su SHIN ; Hyun Young KIM ; Eun Ju CHO
Nutrition Research and Practice 2024;18(5):647-662
BACKGROUND/OBJECTIVES:
There is growing interest in herbal medicines for managing age-related diseases, such as Alzheimer's and Parkinson’s. Safflower seeds (Carthamus tinctorius L. seeds, CTS) and dandelions (Taraxacum coreanum, TC) are widely used to treat bone- or inflammation-related diseases in Oriental countries. This study investigated the protective effect of the CTS–TC combination on scopolamine (Sco)-induced memory deficits through inflammatory response and cholinergic function. Moreover, marker components such as serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid in the CTS–TC combination were analyzed for their potential benefits on memory function.MATERIALS/METHODS: Water extracts of CTS, TC, and the CTS–TC combination at various ratios (4:1, 1:1, and 1:4) (100 mg/kg) were orally administered to mice for 14 days. Sco (1 mg/kg) was intraperitoneally injected into the mice before each behavioral test. T-maze and novel object recognition tests were conducted to monitor behavioral changes after the treatment.Western blotting was performed to detect protein expression. In addition, the presence of 5 biomarkers, serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid, was analyzed using high-performance liquid chromatography (HPLC).
RESULTS:
Behavioral tests showed that the CTS–TC combination enhanced memory function in Sco-injected mice. Inflammation-related proteins (inducible nitric oxide synthase, cyclooxygenase-2, and glial fibrillary acidic protein) were downregulated after treatment with the CTS–TC combination. The acetylcholinesterase protein expression was also downregulated.HPLC analysis revealed that N-feruloylserotonin and chicoric acid were the predominant components, followed by N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin.
CONCLUSION
These findings suggest that the CTS–TC combination protects against Sco-induced memory deficits by inhibiting inflammatory responses and cholinergic dysfunction. N-feruloylserotonin and chicoric acid, along with N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin, might be biomarkers for the CTS–TC combination, and their effects on memory protection warrant further study.
10.Carthamus tinctorius seeds–Taraxacum coreanum combination attenuates scopolamine-induced memory deficit through regulation of inflammatory response and cholinergic function
Mei Tong HE ; Yu-Su SHIN ; Hyun Young KIM ; Eun Ju CHO
Nutrition Research and Practice 2024;18(5):647-662
BACKGROUND/OBJECTIVES:
There is growing interest in herbal medicines for managing age-related diseases, such as Alzheimer's and Parkinson’s. Safflower seeds (Carthamus tinctorius L. seeds, CTS) and dandelions (Taraxacum coreanum, TC) are widely used to treat bone- or inflammation-related diseases in Oriental countries. This study investigated the protective effect of the CTS–TC combination on scopolamine (Sco)-induced memory deficits through inflammatory response and cholinergic function. Moreover, marker components such as serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid in the CTS–TC combination were analyzed for their potential benefits on memory function.MATERIALS/METHODS: Water extracts of CTS, TC, and the CTS–TC combination at various ratios (4:1, 1:1, and 1:4) (100 mg/kg) were orally administered to mice for 14 days. Sco (1 mg/kg) was intraperitoneally injected into the mice before each behavioral test. T-maze and novel object recognition tests were conducted to monitor behavioral changes after the treatment.Western blotting was performed to detect protein expression. In addition, the presence of 5 biomarkers, serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid, was analyzed using high-performance liquid chromatography (HPLC).
RESULTS:
Behavioral tests showed that the CTS–TC combination enhanced memory function in Sco-injected mice. Inflammation-related proteins (inducible nitric oxide synthase, cyclooxygenase-2, and glial fibrillary acidic protein) were downregulated after treatment with the CTS–TC combination. The acetylcholinesterase protein expression was also downregulated.HPLC analysis revealed that N-feruloylserotonin and chicoric acid were the predominant components, followed by N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin.
CONCLUSION
These findings suggest that the CTS–TC combination protects against Sco-induced memory deficits by inhibiting inflammatory responses and cholinergic dysfunction. N-feruloylserotonin and chicoric acid, along with N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin, might be biomarkers for the CTS–TC combination, and their effects on memory protection warrant further study.