1.Study on the Necessity and Methodology for Enhancing Outpatient and Clinical Education in the Department of Radiology
Soo Buem CHO ; Jiwoon SEO ; Young Hwan KIM ; You Me KIM ; Dong Gyu NA ; Jieun ROH ; Kyung-Hyun DO ; Jung Hwan BAEK ; Hye Shin AHN ; Min Woo LEE ; Seunghyun LEE ; Seung Eun JUNG ; Woo Kyoung JEONG ; Hye Doo JEONG ; Bum Sang CHO ; Hwan Jun JAE ; Seon Hyeong CHOI ; Saebeom HUR ; Su Jin HONG ; Sung Il HWANG ; Auh Whan PARK ; Ji-hoon KIM
Journal of the Korean Society of Radiology 2025;86(1):199-200
2.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
3.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
4.Study on the Necessity and Methodology for Enhancing Outpatient and Clinical Education in the Department of Radiology
Soo Buem CHO ; Jiwoon SEO ; Young Hwan KIM ; You Me KIM ; Dong Gyu NA ; Jieun ROH ; Kyung-Hyun DO ; Jung Hwan BAEK ; Hye Shin AHN ; Min Woo LEE ; Seunghyun LEE ; Seung Eun JUNG ; Woo Kyoung JEONG ; Hye Doo JEONG ; Bum Sang CHO ; Hwan Jun JAE ; Seon Hyeong CHOI ; Saebeom HUR ; Su Jin HONG ; Sung Il HWANG ; Auh Whan PARK ; Ji-hoon KIM
Journal of the Korean Society of Radiology 2025;86(1):199-200
5.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
6.Study on the Necessity and Methodology for Enhancing Outpatient and Clinical Education in the Department of Radiology
Soo Buem CHO ; Jiwoon SEO ; Young Hwan KIM ; You Me KIM ; Dong Gyu NA ; Jieun ROH ; Kyung-Hyun DO ; Jung Hwan BAEK ; Hye Shin AHN ; Min Woo LEE ; Seunghyun LEE ; Seung Eun JUNG ; Woo Kyoung JEONG ; Hye Doo JEONG ; Bum Sang CHO ; Hwan Jun JAE ; Seon Hyeong CHOI ; Saebeom HUR ; Su Jin HONG ; Sung Il HWANG ; Auh Whan PARK ; Ji-hoon KIM
Journal of the Korean Society of Radiology 2025;86(1):199-200
7.Genetic screening and follow-up results in 3 001 newborns in the Yunnan region.
Ao-Yu LI ; Bao-Sheng ZHU ; Jin-Man ZHANG ; Ying CHAN ; Jun-Yue LIN ; Jie ZHANG ; Xiao-Yan ZHOU ; Hong CHEN ; Su-Yun LI ; Na FENG ; Yin-Hong ZHANG
Chinese Journal of Contemporary Pediatrics 2025;27(6):654-660
OBJECTIVES:
To evaluate the application value of genetic newborn screening (gNBS) in the Yunnan region.
METHODS:
A prospective study was conducted with a random selection of 3 001 newborns born in the Yunnan region from February to December 2021. Traditional newborn screening (tNBS) was used to test biochemical indicators, and targeted next-generation sequencing was employed to screen 159 genes related to 156 diseases. Positive-screened newborns underwent validation and confirmation tests, and confirmed cases received standardized treatment and long-term follow-up.
RESULTS:
Among the 3 001 newborns, 166 (5.53%) were initially positive for genetic screening, and 1 435 (47.82%) were genetic carriers. The top ten genes with the highest variation frequency were GJB2 (21.29%), DUOX2 (7.27%), HBA (6.14%), GALC (3.63%), SLC12A3 (3.33%), HBB (3.03%), G6PD (2.94%), SLC25A13 (2.90%), PAH (2.73%), and UNC13D (2.68%). Among the initially positive newborns from tNBS and gNBS, 33 (1.10%) and 47 (1.57%) cases were confirmed, respectively. A total of 48 (1.60%) cases were confirmed using gNBS+tNBS. The receiver operating characteristic curve analysis demonstrated that the areas under the curve for tNBS, gNBS, and gNBS+tNBS in diagnosing diseases were 0.866, 0.982, and 0.968, respectively (P<0.05). DeLong's test showed that the area under the curve for gNBS and gNBS+tNBS was higher than that for tNBS (P<0.05).
CONCLUSIONS
gNBS can expand the range of disease detection, and its combined use with tNBS can significantly shorten diagnosis time, enabling early intervention and treatment.
Humans
;
Infant, Newborn
;
Neonatal Screening
;
Genetic Testing
;
Female
;
Male
;
Follow-Up Studies
;
Prospective Studies
;
China
8.Diagnostic value of TRPS1 protein in lung metastasis of breast cancer
Shiwei XIAO ; Su JIN ; Junqiu YUE ; Na FANG
Chinese Journal of Clinical and Experimental Pathology 2024;40(9):967-972
Purpose To analyze the expression of TRPS1 protein in breast cancer and lung cancer and its difference,and to explore the diagnostic value of TRPS1 protein in differential diagnosis between lung metastasis from breast cancer and prima-ry lung cancer.Methods A total of 369 cases of breast canc-er,57 cases of primary lung cancer(23 cases of surgical resec-tion samples,34 cases of biopsy samples),and 35 cases of lung metastases from breast cancer(3 cases of surgical resection sam-ples,32 cases of biopsy samples)were collected.Immunohisto-chemical EnVision method was used to detect the expression of TRPS1 protein in all cases and to analyze its expression differ-ences.Results TRPS1 protein was expressed in 369 cases of breast cancer,of which 93.2%cases showed diffusely strongly positive expression(≥95% strongly positive expression in tumor cell nucleus),6.8% cases showed heterogeneous expres-sion of tumor cells,and the tumor types were mainly breast cancer with sweat gland differentiation and metaplastic cancer.Among 57 cases of primary lung cancer,28.1%of cases were negative for TRPS1,70.2% of cases showed heterogeneous ex-pression,manifested as varying degrees of nuclear staining or only focal nuclear staining,and heterogeneous expression was dominant in different histological types including adenocarcino-ma,squamous cell carcinoma,and neuroendocrine carcinoma.In addition,TRPS1 was observed to be diffusely strongly positive in one(1.7%)lung adenocarcinoma biopsy sample.Among 35 cases of lung metastases from breast cancer,including surgical resection samples and biopsy samples,100%cases showed dif-fusely strongly positive expression of TRPS1.The expression of TRPS1 in lung metastasis of breast cancer and primary lung cancer was significantly different(P<0.001).Conclusion TRPS1 protein is a highly sensitive and specific biomarker for breast cancer,but it can still be expressed in other tumors such as lung cancer,and it is also observed that TRPS1 is expressed to varying degrees in various histological types of lung cancer,which has certain diagnostic value in differentiating lung metas-tases from primary lung cancer in breast cancer,but it cannot be used as a single diagnostic marker,especially in small biopsy tissues of lung nodules.Therefore it is necessary to use multiple biomarkers to comprehensively determine the source of metasta-ses to improve the diagnostic accuracy,so as to guide follow-up clinical treatment.
9.Associations of reproductive health indicators with lung function and COPD among female community residents aged 40 years and above in Songjiang District,Shanghai
Xin YIN ; Yi-Ling WU ; Shan-Shan HOU ; Jing LI ; Wei LUO ; Min-Jun YU ; Jin-Xin ZANG ; Wei WANG ; Xu-Yan SU ; Qi ZHAO ; Yin-Feng ZHU ; Gen-Ming ZHAO ; Yong-Gen JIANG ; Qing-Wu JIANG ; Na WANG
Fudan University Journal of Medical Sciences 2024;51(6):882-889
Objective To investigate the associations of reproductive health indicators with lung function and chronic obstructive pulmonary disease(COPD)among women aged 40 years and above.Methods From Jul to Sep,2021,female subjects aged 40 years and above were randomly selected from the Shanghai Suburban Adult Cohort and Biobank for COPD screening.A questionnaire was used to obtain information on demographic characteristics and reproductive health indicators.Linear regression was used to analyze the effects of reproductive health indicators on forced vital capacity(FVC)and forced expiratory volume in the first second(FEV1).Logistic regression was also used to analyze the effects of reproductive health factors on FVC as a percentage of the predicted value(FVC%Pred)and FEV1%Pred as well as on COPD.Results A total of 1876 women aged 40 years and above were enrolled with mean age of(62.1±8.2)years old,among them,78.1%were menopausal,and 40.9%had been pregnant≥3 times.Multivariate analysis showed that FVC and FEV1 decreased in postmenopausal women,but menopause was not associated with a decrease in their percentage of predicted values.Pregnancies≥3 times was a risk factor for COPD(for 3 times,OR=4.92,95%CI:1.48-19.95,P<0.05;for≥4 times,OR=9.06,95%CI:2.32-41.57,P<0.01),while pregnancies of 2 times did not increase the risk of COPD.Conclusion In women aged 40 years and above,menopause is associated with poorer FVC and FEV1,and excessive pregnancy(≥3 times)is a risk factor for COPD.
10.Serum metabolomics study in patients with occupational chronic lead poisoning
Bingchen LIU ; Jin XU ; Yao SU ; Wei WANG ; Hong QIN ; Na SUN ; Chunping LI
China Occupational Medicine 2024;51(5):496-504
Objective To investigate the changes of serum metabolites in patients with occupational chronic lead poisoning using non-targeted metabolomics, and to screen differential metabolic pathways. Methods A total of 14 patients with occupational chronic lead poisoning were selected as the poisoning group, and 14 healthy people without occupational hazard exposure history were selected as the control group using the judgment sampling method. Serum of the individuals from the two groups was collected. Non-targeted metabolomics technology based on ultra high performance liquid chromatography-tandem mass spectrometry was used to detect serum metabolite levels in the two groups. Differential metabolites (DMs) were screened by the principal component analysis, partial least squares discriminant analysis and orthogonal partial least squares discriminant analysis, and related metabolic pathways were explored. Results The blood lead level in the poisoning group was higher than that in the control group (median: 359.59 vs 5.04 μg/L, P<0.01). There were significant differences in serum metabolites between the poisoning group and control group. After the combination of results from the positive and negative ion patterns, a total of 89 DMs were screened in serum of patients in the poisoning group, including 50 upregulated and 39 downregulated metabolites compared with the control group. The serum DMs of poisoning group were mainly enriched in arginine biosynthesis, ABC transporter, purine metabolism, choline metabolism in malignant tumor, glycerophospholipid metabolism and ether lipid metabolism compared with the control group (all P<0.05). Conclusion Abnormal changes of serum metabolic profile occurred in patients with occupational chronic lead poisoning. The metabolic pathways such as arginine biosynthesis, ABC transporter, purine metabolism, choline metabolism, glycerophospholipid metabolism and ether lipid metabolism may be involved in the occurrence and development of lead poisoning.

Result Analysis
Print
Save
E-mail