1.Functional and Histologic Changes After Repeated Transcranial Direct Current Stimulation in Rat Stroke Model.
Sang Jun KIM ; Byeong Kwon KIM ; Young Jin KO ; Moon Suk BANG ; Man Ho KIM ; Tai Ryoon HAN
Journal of Korean Medical Science 2010;25(10):1499-1505
Transcranial direct current stimulation (tDCS) is associated with enhancement or weakening of the NMDA receptor activity and change of the cortical blood flow. Therefore, repeated tDCS of the brain with cerebrovascular injury will induce the functional and histologic changes. Sixty-one Sprague-Dawley rats with cerebrovascular injury were used. Twenty rats died during the experimental course. The 41 rats that survived were allocated to the exercise group, the anodal stimulation group, the cathodal stimulation group, or the control group according to the initial motor function. Two-week treatment schedules started from 2 days postoperatively. Garcia, modified foot fault, and rota-rod performance scores were checked at 2, 9, and 16 days postoperatively. After the experiments, rats were sacrificed for the evaluation of histologic changes (changes of the white matter axon and infarct volume). The anodal stimulation and exercise groups showed improvement of Garcia's and modified foot fault scores at 16 days postoperatively. No significant change of the infarct volume happened after exercise and tDCS. Neuronal axons at the internal capsule of infarct hemispheres showed better preserved axons in the anodal stimulation group. From these results, repeated tDCS might have a neuroprotective effect on neuronal axons in rat stroke model.
Animals
;
Axons/pathology
;
Cerebral Cortex/physiology
;
Disease Models, Animal
;
Electric Stimulation
;
Motor Activity/physiology
;
Rats
;
Rats, Sprague-Dawley
;
Stroke/metabolism/*pathology/physiopathology
2.Effects of Isometric Contraction Training by Electrostimulation on Type I and II Hindlimb Muscles in Cerebral Ischemia Model Rats.
Yoon Kyong LEE ; Myoung Ae CHOE ; Gyeong Ju AN
Journal of Korean Academy of Nursing 2006;36(7):1232-1241
PURPOSE: The purpose of this study was to examine the effects of cerebral ischemia on Type I(soleus) and Type II(plantaris, gastrocnemius) muscles, and to determine the effects of isometric contraction training by electrostimulation on Type I andII muscles in cerebral ischemia model rats. METHOD: Twenty-five male Sprague-Dawley rats were randomly divided into four groups: ST(stroke), STES(stroke+electrostimulation), SH(sham) and SHES (sham+electrostimulation). The ST and STES groups received a transient right middle cerebral artery occlusion operation. The SH and SHES groups received a sham operation. The STES and SHES groups had daily isometric contraction training by electrostimulation(100Hz, 45mA, 7.5V) on hindlimb muscles for 7days. RESULT: Plantaris and gastrocenmius muscle weight, myofibrillar protein contents of soleus and gastrocnemius, and the muscle fiber cross-sectional area of gastrocnemius in the ST group significantly decreased compared with the SH group. Soleus, plantaris, gastrocnemius muscle weight, myofibrillar protein contents of soleus and gastrocnemius, and the Type I muscle fiber cross-sectional area of soleus and the Type II muscle fiber cross-sectional area of gastrocnemius in the STES group significantly increased compared with the ST group. CONCLUSION: Hindlimb muscle atrophy occurs after acute stroke and isometric contraction training by electrostimulation during early stages of a stroke attenuates muscle atrophy of Type I and Type II muscles.
Animals
;
Body Weight
;
Brain Ischemia/*complications
;
Disease Models, Animal
;
Electric Stimulation
;
Hindlimb
;
*Isometric Contraction
;
Male
;
Muscle Proteins/analysis
;
Muscle, Skeletal/metabolism/pathology/*physiopathology
;
Muscular Atrophy/*etiology/pathology/physiopathology
;
Myofibrils/chemistry
;
Rats
;
Rats, Sprague-Dawley
;
Stroke/*complications
3.Prophylactic effect of quinacrine against experimental heatstroke.
Yong-Qi ZHAO ; Lu-Ming WANG ; Cheng XING ; Shu-Hong LIU ; Yan WU ; Ming FAN
Acta Pharmaceutica Sinica 2007;42(8):817-821
The present study is to assess the prophylactic effect of quinacrine (QA) , an anti-malarial drug, against heatstroke in rats. Conscious rats were orally given equal volume normal saline or QA (dissolved in normal saline and final dosage for rats was 4.5, 9.0 and 18 mg x kg(-1)). An hour later rats were put into a warm water circulated hot chamber (41.0 +/- 0.5) degrees C. Rectal temperature (core temperature, T(co)) of rats in hot chamber was continuously monitored by a thermocouple. T(co) and survival time of rats showed that QA pre-treatment postponed the hyperthermia, and increased the survival time of rats in hot chamber. Primary striatum neurons' culture from new born rats was maintained with D-MEM and 10% FBS. After immuno-cytochemistry identification with antibodies against neural specific proteins, culture received 20 micromol x L(-1) QA only for 1 h and followed by 43.0 degrees C heat treatment for another hour, or 20 micromol x L(-1) QA for 1 h followed by 43.0 degrees C heat treatment for another hour. Control culture received heat treatment only. Cultures were labeled with the fluorescent indicator DPH and the relative membrane fluidity of neurons was measured with the help of fluorescent polarized spectrophotometer. [3H] Arachidonic acid (AA) labeled membrane of E. Coli cells was used as substrate to determine cPLA2 activity of neurons. Gas chromatography and mass spectrum were also employed to detect on the level of fatty acids level in rat striatum neurons. Results from cells indicated that inhibition of cPLA2, reduction the release of active fatty acids such as AA, and possibly, stabilization of the cell membrane which was disturbed by hot treatment, may contribute to the mechanism underlying heat protection and heatstroke preventive effects of quinacrine.
Animals
;
Cells, Cultured
;
Corpus Striatum
;
drug effects
;
pathology
;
Fatty Acids
;
metabolism
;
Heat Stroke
;
metabolism
;
physiopathology
;
prevention & control
;
Hot Temperature
;
adverse effects
;
Male
;
Membrane Fluidity
;
drug effects
;
Neurons
;
enzymology
;
metabolism
;
physiology
;
Phospholipases A2
;
metabolism
;
Quinacrine
;
pharmacology
;
Rats
;
Rats, Wistar
4.Ischemic Stroke in Rats Enhances Bone Resorption in Vitro.
Myung Eun CHUNG ; Jong In LEE ; Sun IM ; Joo Hyun PARK
Journal of Korean Medical Science 2012;27(1):84-88
We hypothesized that the formation and differentialtion of osteoclasts are accelerated and the potential of bone resorption is increased in the hemiplegic bone marrow in the early stage of stroke. We randomly divided white female Sprague-Dawley (SD) rats (n = 30) into two groups, stroke (n = 15) and sham group (n = 15). On the 7th day after stroke, after cutting away the epiphyses of the femurs and tibias, diaphyseal channels were flushed using alpha-minimum essential medium (alpha-MEM) and bone marrow cells were collected. Bone marrow stem cells, which were extracted from the femur and tibia, were cultured on the 7th day after middle cerebral artery occlusion. We then estimated the ratio of non-adherent cells to total bone marrow cells that included osteoclast precursor cells. After culturing these cells separately, cells that tested positive on the tartrate resistant acid phosphatase (TRAP) were counted and bone resorption was evaluated by using the OAAS(TM) plate. In comparison to the control group, the stroke group showed a higher increase of non-adherent cells in the hemiplegic side bone marrow. In addition, after the primary culture, the stroke group showed an increased number of TRAP positive cells and a higher degree of bone resorption estimated by OAAS(TM) plate. As a result, osteoclastogenesis and osteoclast differentiation are accelerated and the potential of bone resorption is increased in the hemiplegic bone marrow and these changes are detected as early as within the first week after middle cerebral artery occlusion in SD rats.
Animals
;
Bone Marrow Cells/cytology/drug effects
;
Bone Resorption/*physiopathology
;
Cell Differentiation
;
Cell Separation
;
Cells, Cultured
;
Female
;
Femur/cytology
;
Osteoclasts/cytology
;
Rats
;
Rats, Sprague-Dawley
;
Stem Cells/cytology/metabolism
;
Stroke/*metabolism/pathology
;
Tartrates/pharmacology
;
Tibia/cytology
5.Protective effect of dexrazoxane on cardiotoxicity in breast cancer patients who received anthracycline-containing chemotherapy.
Pei WANG ; Sheng ZHANG ; Xiao-bei ZHANG ; Wen-jin LI ; Xiao-meng HAO ; Jin ZHANG
Chinese Journal of Oncology 2013;35(2):135-139
OBJECTIVETo evaluate the cardioprotective effects of dexrazoxane (DEX) on breast cancer patients who received anthracycline-containing chemotherapy.
METHODSA total of 122 breast cancer patients after operation were randomly divided into two groups: The experimental group of 61 cases treated with EPI plus DEX (DEX:EPI = 10:1) as adjuvant chemotherapy regimen, and the control group of 61 cases treated with EPI but without DEX. All patients received four cycles of adjuvant chemotherapy and their changes of specific cardiac functional status and hematology status before and after chemotherapy, as well as non-cardiac toxicity were observed and analyzed.
RESULTSBrain natriuretic peptide (BNP) before chemotherapy and after four cycles of chemotherapy in the control group was (106.78 ± 4.52)×10(-6) µg/ml and (187.19 ± 8.71)×10(-6) µg/ml, respectively, with a significant difference between them (P < 0.05). It in the experimental group was (102.34 ± 8.76)×10(-6) µg/ml and (105.29 ± 7.21)×10(-6) µg/ml, respectively, without a significant difference (P > 0.05). Cardiac troponin T (cTnT) before chemotherapy and after four cycles of chemotherapy in the control group was (12.55 ± 2.73)×10(-3) µg/ml and ( 31.05 ± 7.10 )×10(-3) µg/ml, respectively, with a significant difference between them (P < 0.05). It in the experimental group was (12.70 ± 2.15)×10(-3) µg/ml and (13.65 ± 7.82)×10(-3) µg/ml, respectively, without a significant difference (P > 0.05). The hart rate (HR) before chemotherapy and after four cycles of chemotherapy in the control group, was 75.32 ± 7.14 bpm and 89.60 ± 9.21 bpm, respectively, with a significant difference (P < 0.05). It in the experimental group was 78.60 ± 6.29 bpm and 83.10 ± 7.56 bpm, respectively, without a significant difference (P > 0.05). The left ventricular ejection fraction (LVEF) before chemotherapy and after four cycles of chemotherapy in the control group was (65.23 ± 7.82)% and (55.21 ± 7.23)%, respectively, with a significant difference between them (P < 0.05). It in the experimental group was (64.12 ± 6.25)% and (59.6 ± 4.72)%, respectively, without a significant difference (P > 0.05). The absolute neutrophil count before chemotherapy and after four cycles of chemotherapy in the control group was (3.95 ± 1.36)×10(9)/L and (3.50 ± 1.52)×10(9)/L, respectively, without a significant difference (P > 0.05). It in the experimental group, was (4.96 ± 1.41)×10(9)/L and (3.10 ± 1.26)×10(9)/L, respectively, with a significant difference (P < 0.05). The incidence of grade I-IV bone marrow suppression in the experimental group was 21.3%, 16.4%, 24.6%, and 4.9%, respectively. It in the control group was 16.4%, 11.5%, 9.8%, and 5.5%, respectively, with a significant difference (P < 0.05).
CONCLUSIONSCardiac toxicity after anthracycline treatment in breast cancer patients may be significantly reduced by DEX, without increase of non-cardiac and and non-hematologic toxicity. DEX combined with anthracycline increases the risk of bone marrow suppression, therefore, peripheral blood picture should be monitored or routine bone marrow support may be needed.
Adolescent ; Adult ; Aged ; Antibiotics, Antineoplastic ; adverse effects ; therapeutic use ; Bone Marrow ; drug effects ; Breast Neoplasms ; drug therapy ; metabolism ; pathology ; physiopathology ; surgery ; Cardiovascular Agents ; adverse effects ; therapeutic use ; Chemotherapy, Adjuvant ; Epirubicin ; adverse effects ; therapeutic use ; Female ; Follow-Up Studies ; Heart Rate ; drug effects ; Humans ; Leukocyte Count ; Middle Aged ; Natriuretic Peptide, Brain ; metabolism ; Neutrophils ; cytology ; Razoxane ; adverse effects ; therapeutic use ; Stroke Volume ; drug effects ; Young Adult