1.Metformin ameliorates insulin resistance in L6 rat skeletal muscle cells through upregulation of SIRT3.
Yuping SONG ; Jingli SHI ; Ying WU ; Chong HAN ; Junjie ZOU ; Yongquan SHI ; Zhimin LIU
Chinese Medical Journal 2014;127(8):1523-1529
BACKGROUNDSIRT3 is an important regulator in cell metabolism, and recent studies have shown that it may be involved in the pharmacological effects of metformin. However, the molecular mechanisms underlying this process are unclear.
METHODSThe effects of SIRT3 on the regulation of oxidative stress and insulin resistance in skeletal muscle were evaluated in vitro. Differentiated L6 skeletal muscle cells were treated with 750 µmol/L palmitic acid to induce insulin resistance. SIRT3 was knocked down and overexpressed in L6 cells. SIRT3, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65, c-Jun N-terminal kinase 1 (JNK1), and superoxide dismutase 2 (SOD2) were evaluated by Western blotting.
RESULTSOver expression of SIRT3 increased glucose uptake and decreased ROS production in L6-IR cells as well as in L6 cells. Knock-down of SIRT3 induced increased production of ROS while decreased glucose uptake in both L6 and L6-IR cells, and these effects were reversed by N-acetyl-L-cysteine (NAC). Metformin increased the expression of SIRT3 (1.5-fold) and SOD2 (2-fold) while down regulating NF-κB p65 (1.5-fold) and JNK1 (1.5-fold). Knockdown of SIRT3 (P < 0.05) reversed the metformin-induced decreases in NF-κB p65 and JNK1 and the metformin-induced increase in SOD2 (P < 0.05).
CONCLUSIONSUpregulated SIRT3 is involved in the pharmacological mechanism by which metformin promotes glucose uptake. Additionally, SIRT3 may function as an important regulator of oxidative stress and a new alternative approach for targeting insulin resistance-related diseases.
Animals ; Cell Line ; Insulin Resistance ; physiology ; Metformin ; pharmacology ; Muscle Fibers, Skeletal ; drug effects ; metabolism ; Oxidative Stress ; drug effects ; Rats ; Sirtuin 3 ; metabolism ; Transcription Factor RelA ; metabolism
2.Staurosporine and cytochalasin D induce chondrogenesis by regulation of actin dynamics in different way.
Minjung KIM ; Kyung SONG ; Eun Jung JIN ; Jongkyung SONN
Experimental & Molecular Medicine 2012;44(9):521-528
Actin cytoskeleton has been known to control and/or be associated with chondrogenesis. Staurosporine and cytochalasin D modulate actin cytoskeleton and affect chondrogenesis. However, the underlying mechanisms for actin dynamics regulation by these agents are not known well. In the present study, we investigate the effect of staurosporine and cytochalasin D on the actin dynamics as well as possible regulatory mechanisms of actin cytoskeleton modulation. Staurosporine and cytochalasin D have different effects on actin stress fibers in that staurosporine dissolved actin stress fibers while cytochalasin D disrupted them in both stress forming cells and stress fiber-formed cells. Increase in the G-/F-actin ratio either by dissolution or disruption of actin stress fiber is critical for the chondrogenic differentiation. Cytochalasin D reduced the phosphorylation of cofilin, whereas staurosporine showed little effect on cofilin phosphorylation. Either staurosporine or cytochalasin D had little effect on the phosphorylation of myosin light chain. These results suggest that staurosporine and cytochalasin D employ different mechanisms for the regulation of actin dynamics and provide evidence that removal of actin stress fibers is crucial for the chondrogenic differentiation.
Actin Cytoskeleton/*drug effects
;
Actins/metabolism
;
Animals
;
Cell Differentiation/*drug effects
;
Cells, Cultured
;
Chickens
;
Chondrogenesis/*drug effects
;
Cytochalasin D/*pharmacology
;
Mesoderm/cytology/drug effects
;
Myosin Light Chains/metabolism
;
Nucleic Acid Synthesis Inhibitors/*pharmacology
;
Phosphorylation
;
Staurosporine/*pharmacology
;
Stress Fibers/drug effects
3.Suilysin remodels the cytoskeletons of human brain microvascular endothelial cells by activating RhoA and Rac1 GTPase.
Qingyu LV ; Huaijie HAO ; Lili BI ; Yuling ZHENG ; Xuyu ZHOU ; Yongqiang JIANG
Protein & Cell 2014;5(4):261-264
Brain
;
Cholesterol
;
chemistry
;
Cytoskeleton
;
drug effects
;
Endothelial Cells
;
cytology
;
metabolism
;
Hemolysin Proteins
;
chemistry
;
pharmacology
;
Humans
;
Phalloidine
;
pharmacology
;
Pseudopodia
;
drug effects
;
Stress Fibers
;
drug effects
;
rac1 GTP-Binding Protein
;
metabolism
;
rhoA GTP-Binding Protein
;
metabolism