1.Effects of Rehmanniae Radix and Rehmanniae Radix Praeparata on proteomics and autophagy in mice with type 2 diabetes mellitus induced by high-fat diet coupled with streptozotocin.
Jing-Ning YAN ; Xiao-Qin LIU ; Xiang-Long MENG ; Ke-le REN ; Xue-Min WU ; Hao ZHANG ; Hai-Qin WANG ; Hong-Liang WANG ; Qi SHENG ; Bin LI ; Ding-Bang ZHANG ; Hong-Zhou CHEN ; Fa-Yun ZHANG ; Ming-Hao LI ; Shuo-Sheng ZHANG
China Journal of Chinese Materia Medica 2023;48(6):1535-1545
To compare the pancreatic proteomics and autophagy between Rehmanniae Radix-and Rehmanniae Radix Praeparata-treated mice with type 2 diabetes mellitus(T2DM). The T2DM mouse model was established by high-fat diet coupled with streptozotocin(STZ, intraperitoneal injection, 100 mg·kg~(-1), once a day for three consecutive days). The mice were then randomly assigned into a control group, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) catalpol groups, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix Praeparata groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) 5-hydroxymethyl furfuraldehyde(5-HMF) groups, and a metformin(250 mg·kg~(-1)) group. In addition, a normal group was also set and each group included 8 mice. The pancreas was collected after four weeks of administration and proteomics tools were employed to study the effects of Rehmanniae Radix and Rehmanniae Radix Praeparata on protein expression in the pancreas of T2DM mice. The expression levels of proteins involved in autophagy, inflammation, and oxidative stress response in the pancreatic tissues of T2DM mice were determined by western blotting, immunohistochemical assay, and transmission electron microscopy. The results showed that the differential proteins between the model group and Rehmanniae Radix/Rehmanniae Radix Prae-parata group were enriched in 7 KEGG pathways, such as autophagy-animal, which indicated that the 7 pathways may be associated with T2DM. Compared with the control group, drug administration significantly up-regulated the expression levels of beclin1 and phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR and down-regulated those of the inflammation indicators, Toll-like receptor-4(TLR4) and Nod-like receptor protein 3(NLRP3), in the pancreas of T2DM mice, and Rehmanniae Radix showed better performance. In addition, the expression levels of inducible nitric oxide synthase(iNOS), nuclear factor erythroid 2-related factor 2(Nrf2), and heine oxygenase-1(HO-1) in the pancreas of T2DM mice were down-regulated after drug administration, and Rehmanniae Radix Praeparata demonstrated better performance. The results indicate that both Rehmanniae Radix and Rehmanniae Radix Praeparata can alleviate the inflammatory symptoms, reduce oxidative stress response, and increase the autophagy level in the pancreas of T2DM mice, while they exert the effect on different autophagy pathways.
Mice
;
Animals
;
Diabetes Mellitus, Type 2/genetics*
;
Streptozocin/pharmacology*
;
Diet, High-Fat/adverse effects*
;
Proteomics
;
Inflammation
;
TOR Serine-Threonine Kinases
;
Autophagy
;
Mammals
2.Cardiac ischemia in type 2 diabetes mellitus rats induced by high sucrose and high fat diet and STZ treated.
Xue-Li YAO ; Jin WANG ; Wei-Fang ZHANG ; Xiao-Liang WANG ; Hui-Rong LIU
Chinese Journal of Applied Physiology 2014;30(2):137-140
OBJECTIVETo build a type 2 diabetes mellitus rat model with cardiac ischemia.
METHODSMale Wistar rats were fed high sucrose and high fat diet for four weeks and then injected with streptozoticin (STZ) (40 mg/kg .i.p.). The levels of fasting blood glucose and serum insulin were monitored every week. The body weights of rats were also measured every week. The blood levels of creatine kinase and lactate dehydrogenase (LDH) were measured following the electrocardiograph used BL-410 biological experiment system.
RESULTSThe serum insulin levels of diabetic rats were 4.05 ng/ml after four weeks high sucrose and high fat diet. The fasting blood glucose levels of diabetic rats were 17.9 mmol/L after injection. Compared with normal group, there was obvious change of S-T segment in the electrocardiograph of diabetic group at the fourteenth week. The levels of creatine kinase and lactate dehydrogenase in diabetic group significantly increased in comparison with those in normal group.
CONCLUSIONThe cardiac ischemia of diabetic rats model is suitable for investigating cardiac disease of diabetes mellitus.
Animals ; Creatine Kinase ; blood ; Diabetes Mellitus, Experimental ; physiopathology ; Diabetes Mellitus, Type 2 ; chemically induced ; physiopathology ; Diet, High-Fat ; adverse effects ; Dietary Sucrose ; adverse effects ; Disease Models, Animal ; L-Lactate Dehydrogenase ; blood ; Male ; Myocardial Ischemia ; physiopathology ; Rats ; Rats, Wistar ; Streptozocin
3.Effects of electroacupuncture on expression of Abeta positive cells of the hippocampus and SOD activity in rats with streptozocin-Alzheimer's disease.
Peng ZHANG ; Shan-Shan GUAN ; Guo-Hua JIANG
Chinese Acupuncture & Moxibustion 2010;30(12):1007-1010
OBJECTIVETo investigate the possible mechanism of the electroacupuncture for improvement of learning and memory in rats of Alzheimer's disease (AD).
METHODSSixty Wistar rats were randomly divided into a normal group, a normal saline group, a model group, a western medication group and an electroacupuncture group, 12 rats in each group. The AD rat model was established by injecting Streptozocin (STZ) into lateral cerebral ventricle, except the rats in the normal saline group injecting Normal Saline with the same dose and in normal group with no injection. The western medication group was treated with intragastric administration of Memantine, and in the electroacupuncture group, the electroacupuncture was given at "Baihui" (GV 20), "Dazhui" (CV 14), "Taixi" (KI 3), "Shenshu" (BL 23), "Zusanli" (ST 36), once each day, 7 days for a course, and lasted for 4 courses. The other three groups were fed in routine way and without any treatment. The learning and memory ability was assessed by Morris water maze and the expression of Abeta positive cells of the hippocampus and superoxide dismutase (SOD) activity were determined by immunohistochemistry and visible spectrophotometer colorimetry.
RESULTSCompared with the normal group and the normal saline group, the Abeta protein expression was significantly increased in the model group (both P < 0.01), and the SOD activity was obviously decreased (both P < 0.01). After treatment, as compared with the model group, the Abeta protein expression was significantly decreased (both P < 0.01), and the SOD activity was obviously increased (both P < 0.01) in the electroacupuncture group and western medication group.
CONCLUSIONElectroacupuncture treatment can reduce the Abeta protein expression and increase the SOD activity of the hippocampus so as to improve learning and memory ability in the AD rats.
Alzheimer Disease ; chemically induced ; enzymology ; physiopathology ; therapy ; Amyloid beta-Peptides ; metabolism ; Animals ; Disease Models, Animal ; Electroacupuncture ; Gene Expression Regulation, Enzymologic ; Hippocampus ; enzymology ; metabolism ; Humans ; Learning ; Male ; Memory ; Random Allocation ; Rats ; Rats, Wistar ; Streptozocin ; adverse effects ; Superoxide Dismutase ; genetics ; metabolism
4.Phytochemicals of Periploca aphylla Dcne. ameliorated streptozotocin-induced diabetes in rat.
Umbreen RASHID ; Muhammad Rashid KHAN
Environmental Health and Preventive Medicine 2021;26(1):38-38
BACKGROUND:
Periploca aphylla is used by local population and indigenous medicine practitioners as stomachic, tonic, antitumor, antiulcer, and for treatment of inflammatory disorders. The aim of this study was to evaluate antidiabetic effect of the extract of P. aphylla and to investigate antioxidant and hypolipidemic activity in streptozotocin (STZ)-induced diabetic rats.
METHODS:
The present research was conducted to evaluate the antihyperglycemic potential of methanol extract of P. aphylla (PAM) and subfractions n-hexane (PAH), chloroform (PAC), ethyl acetate (PAE), n-butanol (PAB), and aqueous (PAA) in glucose-overloaded hyperglycemic Sprague-Dawley rats. Based on the efficacy, PAB (200 mg/kg and 400 mg/kg) was tested for its antidiabetic activity in STZ-induced diabetic rats. Diabetes was induced via intraperitoneal injection of STZ (55 mg/kg) in rat. Blood glucose values were taken weekly. HPLC-DAD analysis of PAB was carried out for the presence of various polyphenols.
RESULTS:
HPLC-DAD analysis of PAB recorded the presence of rutin, catechin, caffeic acid, and myricetin. Oral administration of PAB at doses of 200 and 400 mg/kg for 21 days significantly restored (P < 0.01) body weight (%) and relative liver and relative kidney weight of diabetic rats. Diabetic control rats showed significant elevation (P < 0.01) of AST, ALT, ALP, LDH, total cholesterol, triglycerides, LDL, creatinine, total bilirubin, and BUN while reduced (P < 0.01) level of glucose, total protein, albumin, insulin, and HDL in serum. Count of blood cells and hematological parameters were altered in diabetic rats. Further, glutathione peroxidase, catalase, superoxide dismutase, glutathione reductase, and total soluble protein concentration decreased while concentration of thiobarbituric acid reactive substances and percent DNA damages increased (P < 0.01) in liver and renal tissues of diabetic rats. Histopathological damage scores increased in liver and kidney tissues of diabetic rats. Intake of PAB (400 mg/kg) resulted in significant improvement (P < 0.01) of above parameters, and results were comparable to that of standard drug glibenclamide.
CONCLUSION
The result suggests the antihyperglycemic, antioxidant, and anti-inflammatory activities of PAB treatment in STZ-compelled diabetic rat. PAB might be used as new therapeutic agent in diabetic patients to manage diabetes and decrease the complications.
1-Butanol/chemistry*
;
Administration, Oral
;
Animals
;
Diabetes Mellitus, Experimental/drug therapy*
;
Dose-Response Relationship, Drug
;
Hypoglycemic Agents/chemistry*
;
Male
;
Periploca/chemistry*
;
Phytochemicals/chemistry*
;
Plant Extracts/chemistry*
;
Rats
;
Rats, Sprague-Dawley
;
Streptozocin/adverse effects*
5.Rehmanniae Radix and Rehmanniae Radix Praeparata improve diabetes induced by high-fat diet coupled with streptozotocin in mice through AMPK-mediated NF-κB/NLRP3 signaling pathway.
Xiang-Long MENG ; Xiao-Qin LIU ; Chen-Xu NING ; Jun-Nan MA ; Xiao-Yan ZHANG ; Xiao-Juan SU ; Ke-le REN ; Shuo-Sheng ZHANG
China Journal of Chinese Materia Medica 2021;46(21):5627-5640
This study investigated the differential mechanisms of Rehmanniae Radix and Rehmanniae Radix Praeparata in improving diabetes in mice through AMPK-mediated NF-κB/NLRP3 signaling pathway. The diabetic mouse model was established with high-fat diet coupled with streptozotocin(STZ, intraperitoneal injection, 100 mg·kg~(-1), once a day for three consecutive days), after which the mice were randomly divided into model group, low-dose(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix groups, low-dose(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix Praeparata groups, catalpol group(250 mg·kg~(-1)), 5-hydroxymethylfurfural(5-HMF) group(250 mg·kg~(-1)), metformin group(250 mg·kg~(-1)), with the normal group also set. The organ indexes of heart,liver, spleen, lung, kidney and pancreas were calculated after four weeks of administration. The pathological changes and fibrosis of pancreas, kidney and liver in mice were observed by hematoxylin-eosin(HE) staining and Masson staining. Western blot was used to determine the expression levels of Toll-like receptor-4(TLR4), nuclear factor-κB(NF-κB), Nod-like receptor protein 3(NLRP3),interleukin-1β(IL-1β), adenosine monophosphate-activated protein kinase(AMPK), phosphorylated AMPK(p-AMPK) in the pancreas, kidney and liver of mice. Compared with the model group, the administration groups witnessed significant decrease in the liver,spleen, kidney, pancreas and fat indexes of diabetic mice, and there was no significant difference in heart and lung indexes. The pathological states and fibrosis of pancreatic, kidney and liver tissues were significantly improved after administration. Additionally, the expression levels of TLR4, NF-κB and NLRP3 in pancreas, kidney and liver of diabetic mice were significantly lowered. The expression levels of p-AMPK/AMPK were enhanced significantly in kidney and liver of mice in Rehmanniae Radix group while in pancreas, kidney and liver in Rehmanniae Radix Praeparata group. This suggests that Rehmanniae Radix and Rehmanniae Radix Praeparata differ in the mechanism of regulating energy metabolism of multiple organs and thereby exerting anti-inflammatory effects to alleviate symptoms of diabetic mice.
AMP-Activated Protein Kinases/genetics*
;
Animals
;
Diabetes Mellitus, Experimental/drug therapy*
;
Diet, High-Fat/adverse effects*
;
Mice
;
NF-kappa B/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Plant Extracts
;
Rehmannia
;
Signal Transduction
;
Streptozocin
6.Effect of Astragalus and Arctium in different combinations on reactive oxygen species content and nuclear transcription factor kappaB expression in renal tissue of streptozotocin rats.
Chinese Journal of Integrated Traditional and Western Medicine 2008;28(10):917-920
OBJECTIVETo investigate the reactive oxygen species (ROS) content and nuclear transcription factor-kappa B expression (NF-kappaB) in renal tissue of diabetic rats and the effect of Astragalus and Arctium in combination on them.
METHODSStreptozotocin (STZ)-induced diabetic model rats were established. Astragalus and Arctium in different dosages (low, moderate, high) were combined after orthogonal design and administered respectively to the model rats via gastrogavage for 4 or 8 weeks. Content of ROS in the renal tissue was detected by flow cytometry and expression of functional NF-kappaB p65 was assessed by Western blot at the 4th and 8th weekends (4th week and 8th week).
RESULTSROS content of renal tissue in the model rats was 36.55 +/- 7.46% at the 4th week and 31.91 +/- 5.83% at the 8th week, NF-kappaB p65 expression was 165.00 +/- 3.14 at the 4th week and 214.00 +/- 5.11 at the 8th week, all higher than those in normal rats (6.21 +/- 1.83% and 129.00 +/- 1.58 at the 4th week, 6.95 +/- 1.41% and 148.00 +/- 2.32 at the 8th week) respectively. The combined use of Astragalus and Arctium showed decreasing effects on both indexes significantly, and the decreasing effects of the combination with moderate and high dose Astragalus were better than those with low dose, with the details as follows: those of ROS at the 4th week were 11.43 +/- 2.42%, 18.37 +/- 7.58% and 22.10 +/- 4.71% for high, moderate and low dose Astragalus combination respectively (same hereinafter), at the 8th week 12.55 +/-4.40%, 19.15 +/- 6.64% and 23.48 +/- 3.13%; and for NF-kappaB p65 expression at the 8th week, 185.00 +/- 6.99, 183.00 +/- 3.89 and 194.00 +/- 4.98 respectively.
CONCLUSIONCombined use of Astragalus and Arctium may ameliorate the condition of diabetic nephropathy by inhibiting the activation of the ROS-NF-kappaB signal passage.
Animals ; Arctium ; chemistry ; Astragalus Plant ; chemistry ; Diabetic Nephropathies ; chemically induced ; drug therapy ; metabolism ; Disease Models, Animal ; Drug Therapy, Combination ; Gene Expression ; drug effects ; Humans ; NF-kappa B ; genetics ; metabolism ; Plant Extracts ; administration & dosage ; Random Allocation ; Rats ; Rats, Wistar ; Reactive Oxygen Species ; metabolism ; Streptozocin ; adverse effects
7.Berberine enhances antidiabetic effects and attenuates untoward effects of canagliflozin in streptozotocin-induced diabetic mice.
Cai-Ming TIAN ; Xin JIANG ; Xiao-Xi OUYANG ; Ya-Ou ZHANG ; Wei-Dong XIE
Chinese Journal of Natural Medicines (English Ed.) 2016;14(7):518-526
The present study aimed at determining whether berberine can enhance the antidiabetic effects and alleviate the adverse effects of canagliflozin in diabetes mellitus. Streptozotocin-induced diabetic mice were introduced, and the combined effects of berberine and canagliflozin on glucose metabolism and kidney functions were investigated. Our results showed that berberine combined with canagliflozin (BC) increased reduction of fasting and postprandial blood glucose, diet, and water intake compared with berberine or canagliflozin alone. Interestingly, BC showed greater decrease in blood urea nitrogen and creatinine levels and lower total urine glucose excretion than canagliflozin alone. In addition, BC showed increased phosphorylated 5' AMP-activated protein kinase (pAMPK) expression and decreased tumor necrosis factor alpha (TNFα) levels in kidneys, compared with berberine or canagliflozin alone. These results indicated that BC was a stronger antidiabetic than berberine or canagliflozin alone with less negative side effects on the kidneys in the diabetic mice. The antidiabetic effect was likely to be mediated by synergically promoting the expression of pAMPK and reducing the expression of TNFα in kidneys. The present study represented the first report that canagliflozin combined with berberine was a promising treatment for diabetes mellitus. The exact underlying mechanisms of action should be investigated in future studies.
AMP-Activated Protein Kinases
;
metabolism
;
Animals
;
Berberine
;
administration & dosage
;
Blood Glucose
;
metabolism
;
Canagliflozin
;
administration & dosage
;
adverse effects
;
Diabetes Mellitus, Experimental
;
drug therapy
;
metabolism
;
Drug Therapy, Combination
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Hypoglycemic Agents
;
administration & dosage
;
Insulin
;
metabolism
;
Kidney
;
drug effects
;
enzymology
;
metabolism
;
Male
;
Mice
;
Streptozocin
8.Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection.
Xiao-Xuan GUO ; Yong WANG ; Kai WANG ; Bao-Ping JI ; Feng ZHOU
Journal of Zhejiang University. Science. B 2018;19(7):559-569
OBJECTIVE:
The present study aims at determining the stability of a popular type 2 diabetes rat model induced by a high-fat diet combined with a low-dose streptozotocin injection.
METHODS:
Wistar rats were fed with a high-fat diet for 8 weeks followed by a one-time injection of 25 or 35 mg/kg streptozotocin to induce type 2 diabetes. Then the diabetic rats were fed with regular diet/high-fat diet for 4 weeks. Changes in biochemical parameters were monitored during the 4 weeks.
RESULTS:
All the rats developed more severe dyslipidemia and hepatic dysfunction after streptozotocin injection. The features of 35 mg/kg streptozotocin rats more resembled type 1 diabetes with decreased body weight and blood insulin. Rats with 25 mg/kg streptozotocin followed by normal diet feeding showed normalized blood glucose level and pancreatic structure, indicating that normal diet might help recovery from certain symptoms of type 2 diabetes. In comparison, diabetic rats fed with high-fat diet presented decreased but relatively stable blood glucose level, and this was significantly higher than that of the control group (P<0.05).
CONCLUSIONS
This model easily recovers with normal diet feeding. A high-fat diet is suggested as the background diet in future pharmacological studies using this model.
Animals
;
Blood Glucose
;
metabolism
;
Diabetes Mellitus, Experimental
;
blood
;
etiology
;
physiopathology
;
Diabetes Mellitus, Type 2
;
blood
;
etiology
;
physiopathology
;
Diet, High-Fat
;
adverse effects
;
Insulin
;
blood
;
Lipids
;
blood
;
Liver
;
drug effects
;
pathology
;
physiopathology
;
Male
;
Malondialdehyde
;
blood
;
Oxidative Stress
;
Rats
;
Rats, Wistar
;
Streptozocin
;
administration & dosage
;
toxicity
;
Superoxide Dismutase
;
blood
;
Uric Acid
;
blood
9.Mori Cortex extract ameliorates nonalcoholic fatty liver disease (NAFLD) and insulin resistance in high-fat-diet/streptozotocin-induced type 2 diabetes in rats.
Li-Li MA ; Yan-Yan YUAN ; Ming ZHAO ; Xin-Rong ZHOU ; Tashina JEHANGIR ; Fu-Yan WANG ; Yang XI ; Shi-Zhong BU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):411-417
Nonalcoholic fatty liver disease (NAFLD) and type 2 Diabetes Mellitus (T2DM) are highly prevalent diseases and are closely associated, with NAFLD being present in the majority of T2DM patients. In Asian traditional medicine, Mori Cortex is widely used for the treatment of diabetes and hyperlipidemia. However, whether it has a therapeutic effect on T2DM associated with NAFLD is still unknown. The present study showed that the oral treatment with Mori Cortex extract (MCE; 10 g·kg·d) lowered the blood lipid levels and reversed insulin resistance (IR) in high fat-diet/streptozotocin-induced type 2 diabetes in rats. The expression levels of sterol receptor element-binding protein-1c (SREBP-1c) and carbohydrate-responsive element binding protein (ChREBP), which are involved in steatosis in NAFLD rats, were measured in the liver samples. MCE decreased the protein and mRNA expression levels of SREBP-1c and ChREBP. In conclusion, down-regulation of SREBP-1c and ChREBP might contribute to the protective effect of MCE on hepatic injury and IR in the rats with T2DM associated with NAFLD.
Alanine Transaminase
;
blood
;
Animals
;
Aspartate Aminotransferases
;
blood
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
;
genetics
;
Diabetes Mellitus, Type 2
;
blood
;
chemically induced
;
drug therapy
;
metabolism
;
Diet, High-Fat
;
adverse effects
;
Disease Models, Animal
;
Down-Regulation
;
drug effects
;
Insulin
;
blood
;
Insulin Resistance
;
physiology
;
Lipid Metabolism
;
drug effects
;
genetics
;
Liver
;
drug effects
;
physiopathology
;
Male
;
Morus
;
Non-alcoholic Fatty Liver Disease
;
blood
;
chemically induced
;
drug therapy
;
metabolism
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Rats
;
Rats, Sprague-Dawley
;
Streptozocin