1.Heterologous expression and enzymatic analysis of Streptomyces griseus trypsin in Streptomyces lividans.
Tengbo MA ; Zhenmin LING ; Zhen KANG ; Jianghua LI ; Guocheng DU ; Jian CHEN
Chinese Journal of Biotechnology 2013;29(4):466-479
Trypsin as an important serine protease has been widely used in food, pharmaceutical and tanning industries. In this study, we successfully expressed trypsin (cloning from Streptomyces griseus ATCC10137) in Streptomyces lividans TK24 and comparatively investigated its enzymatic properties. Specifically, applying S. griseus ATCC 10137 genome as template, we obtained the sprT gene and sub-cloned it into the expression plasmid pIJ86, generating the recombinant strain S. lividans TK24/pIJ86-sprT. When cultivated in R2YE and SELF, the activity of rSGT reached 9.21 U/mL and 8.61 U/mL, respectively. Meanwhile, the results of the enzymatic analysis showed that rSGT exhibited a higher acid tolerance and a higher specificity to hydrolyze amide bonds compared with bovine trypsin (BT). In addition, Zn2+ and organic solvents up-regulated esterase and amidase of rSGT. Taken together, the results obtained herein provide meaningful information for further modification of rSGT and its industrial application.
Fermentation
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Streptomyces griseus
;
enzymology
;
Streptomyces lividans
;
genetics
;
metabolism
;
Trypsin
;
biosynthesis
;
genetics
2.Activation of silent antibiotic synthesis in Streptomyces lividans by disruption of a negative regulator nsdA, a gene conserved in Streptomyces.
Zhen YU ; Qian WANG ; Zi-Xin DENG ; Mei-Feng TAO
Chinese Journal of Biotechnology 2006;22(5):757-762
The global regulatory gene, nsdA, negatively regulates antibiotics production in Streptomyces coelicolor. Southern blot experiment, using an nsdA fragment of S. coelicolor as probe, indicated that nsdA gene existed in many Streptomyces. Primers were designed based on the published sequences of S. coelicolor and S. avermitilis. PCR amplification and sequencing showed that nsdA in Streptomyces was conservative and that of S. lividans ZX64 has a 100% identity in the nucleotide sequence comparing with that of S. coelicolor A3 (2). The nsdA disrupted mutant of S. lividans was constructed named as WQ2. WQ2 was able to produce actinorhodin but the wild-type strain ZX64 did not, which has a silent gene cluster contributing to the biosynthesis of actinorhodin. However, the ability was lost when another copy of the wild nsdA gene was introduced into WQ2. All the results above indicate that nsdA homologous gene is wildly existent and conserved in Streptomyces. And it plays a role in negatively regulating the actinorhodin synthesis in S. lividans and disruption of it can activate the silent gene cluster.
Anti-Bacterial Agents
;
biosynthesis
;
Blotting, Southern
;
Genes, Bacterial
;
physiology
;
Genes, Regulator
;
physiology
;
Multigene Family
;
Streptomyces lividans
;
genetics
3.Expression of 4"-O-isovaleryltransferase gene from Streptomyces thermotolerans in Streptomyces lividans TK24.
Jiahu ZHANG ; Jingjing ZHONG ; Jianlu DAI ; Yiguang WANG ; Huanzhang XIA ; Weiqing HE
Chinese Journal of Biotechnology 2014;30(9):1390-1400
4"-O-isovaleryltransferase gene (ist) was regulated by positive regulatory genes of midecamycin 4"-O-propionyltransferase gene (mpt) in Streptomyces lividans TK24. A BamH I ~8.0 kb fragment from Streptomyces mycarofaciens 1748 was proved that it contained mpt gene and linked with two positive regulatory genes, orf27 and orf28. Orf of mpt was replaced by orf of ist and linked with two regulatory genes or orf27 single, and individually cloned into the vectors pKC1139 or pWHM3 (high copy number), and then transformed into S. lividans TK24. The levels of mpt and ist expression were evaluated by the bio-tramsformation efficacy of spiramycin into 4"-O-acylspiramycins in these transformants. The results showed that 4"-O-isovalerylspiramycins could be detected only in the transformants containing the plasmids constructed with pWHM3. The efficacy of bio-transformation of the transformants containing two regulatory genes was higher than that of orf27 single. So, the positive regulatory genes system of mpt gene could enhance ist gene expression.
Acyltransferases
;
genetics
;
metabolism
;
Bacterial Proteins
;
genetics
;
metabolism
;
Gene Expression
;
Genetic Vectors
;
Plasmids
;
Spiramycin
;
analogs & derivatives
;
biosynthesis
;
Streptomyces
;
enzymology
;
genetics
;
Streptomyces lividans
;
metabolism
;
Transformation, Genetic
4.Twenty years hunting for sulfur in DNA.
Shi CHEN ; Lianrong WANG ; Zixin DENG
Protein & Cell 2010;1(1):14-21
Here we tell a 20-year long story. It began with an easily overlooked DNA degradation (Dnd) phenomenon during electrophoresis and eventually led to the discovery of an unprecedented DNA sulfur modification governed by five dnd genes. This unusual DNA modification, called phosphorothioation, is the first physiological modification identified on the DNA backbone, in which the nonbridging oxygen is replaced by sulfur in a sequence selective and stereo-specific manner. Homologous dnd gene clusters have been identified in diverse and distantly related bacteria and thus have drawn immediate attention of the entire microbial scientific community. Here, we summarize the progress in chemical, genetic, enzymatic, bioinformatical and analytical aspects of this novel postreplicative DNA modification. We also discuss perspectives on the physiological functions of the DNA phosphorothioate modification in bacteria and their implications.
Bacteria
;
genetics
;
metabolism
;
DNA, Bacterial
;
chemistry
;
history
;
metabolism
;
Genes, Bacterial
;
History, 20th Century
;
History, 21st Century
;
Multigene Family
;
Streptomyces lividans
;
genetics
;
metabolism
;
Sulfur
;
chemistry
;
history
;
metabolism