1.Advances in actinobacterial proteomics.
Yao ZHANG ; Ping XU ; Wenjun LI ; Yong TAO
Chinese Journal of Biotechnology 2014;30(7):1044-1058
Protein is the executor of physiological function, and direct embodiment of the life phenomena. Proteomics aims to systematically clarify all or parts of proteins' role and function in life movement. In post genome era, proteomics began to play more important role in life science field. Actinobacteria are closely linked to human production and life, which have produced many clinically important secondary metabolites, including antibiotics, antitumorals and enzymes. Actinobacterial systematics and its model organism Streptomyces coelicolor in 2001 genome sequence laid the foundation for further functional genomic studies. Actinobacterial proteomics was more directly and exactly to interpret the activity of life than genomics and transcriptomics, which grew much faster and received so much attention from scientists in the near years. Complex morphological differention, stronge environment adaptiveness, nitrogen-fixing capacity, metabolic mechanism, pathogenicity and natural produces' discovery were systematically reviewed in this study, which was expected to be the basis for promoting Actinobacterial proteomics study in the near future.
Actinobacteria
;
genetics
;
metabolism
;
Genomics
;
Proteomics
;
Streptomyces coelicolor
;
genetics
;
metabolism
2.Optimized sample preparation for metabolome studies on Streptomyces coelicolor.
Yihong LI ; Shanshan LI ; Guomin AI ; Weishan WANG ; Buchang ZHANG ; Keqian YANG
Chinese Journal of Biotechnology 2014;30(4):554-568
Streptomycetes produce many antibiotics and are important model microorgansims for scientific research and antibiotic production. Metabolomics is an emerging technological platform to analyze low molecular weight metabolites in a given organism qualitatively and quantitatively. Compared to other Omics platform, metabolomics has greater advantage in monitoring metabolic flux distribution and thus identifying key metabolites related to target metabolic pathway. The present work aims at establishing a rapid, accurate sample preparation protocol for metabolomics analysis in streptomycetes. In the present work, several sample preparation steps, including cell quenching time, cell separation method, conditions for metabolite extraction and metabolite derivatization were optimized. Then, the metabolic profiles of Streptomyces coelicolor during different growth stages were analyzed by GC-MS. The optimal sample preparation conditions were as follows: time of low-temperature quenching 4 min, cell separation by fast filtration, time of freeze-thaw 45 s/3 min and the conditions of metabolite derivatization at 40 degrees C for 90 min. By using this optimized protocol, 103 metabolites were finally identified from a sample of S. coelicolor, which distribute in central metabolic pathways (glycolysis, pentose phosphate pathway and citrate cycle), amino acid, fatty acid, nucleotide metabolic pathways, etc. By comparing the temporal profiles of these metabolites, the amino acid and fatty acid metabolic pathways were found to stay at a high level during stationary phase, therefore, these pathways may play an important role during the transition between the primary and secondary metabolism. An optimized protocol of sample preparation was established and applied for metabolomics analysis of S. coelicolor, 103 metabolites were identified. The temporal profiles of metabolites reveal amino acid and fatty acid metabolic pathways may play an important role in the transition from primary to secondary metabolism in S. coelicolor.
Gas Chromatography-Mass Spectrometry
;
Metabolic Networks and Pathways
;
Metabolome
;
Metabolomics
;
methods
;
Streptomyces coelicolor
;
metabolism
3.Impact of otrA expression on morphological differentiation, actinorhodin production, and resistance to aminoglycosides in Streptomyces coelicolor M145.
Yan-Fang ZHAO ; Dan-Dan LU ; Andreas BECHTHOLD ; Zheng MA ; Xiao-Ping YU
Journal of Zhejiang University. Science. B 2018;19(9):708-717
otrA resembles elongation factor G (EF-G) and is considered to be an oxytetracycline (OTC)-resistance determinant in Streptomyces rimosus. In order to determine whether otrA also conferred resistance to OTC and other aminoglycosides to Streptomyces coelicolor, the otrA gene from S. rimosus M527 was cloned under the control of the strong ermE* promoter. The resulting plasmid, pIB139-otrA, was introduced into S. coelicolor M145 by intergeneric conjugation, yielding the recombinant strain S. coelicolor M145-OA. As expected S. coelicolor M145-OA exhibited higher resistance levels specifically to OTC and aminoglycosides gentamycin, hygromycin, streptomycin, and spectinomycin. However, unexpectedly, S. coelicolor M145-OA on solid medium showed an accelerated aerial mycelia formation, a precocious sporulation, and an enhanced actinorhodin (Act) production. Upon growth in 5-L fermentor, the amount of intra- and extracellular Act production was 6-fold and 2-fold higher, respectively, than that of the original strain. Consistently, reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that the transcriptional level of pathway-specific regulatory gene actII-orf4 was significantly enhanced in S. coelicolor M145-OA compared with in S. coelicolor M145.
Aminoglycosides/pharmacology*
;
Anthraquinones/metabolism*
;
Anti-Bacterial Agents/pharmacology*
;
Bacterial Proteins/genetics*
;
Drug Resistance, Bacterial/genetics*
;
Streptomyces coelicolor/metabolism*
4.Spatio-temporal expression of the pathway-specific regulatory gene redD in S. coelicolor.
Li-hua ZHOU ; Yu-qin LI ; Yong-quan LI ; Dan WU
Journal of Zhejiang University. Science. B 2005;6(6):464-469
Confocal laser scanning microscopy was used to observe the spatio-temporal expression of the pathway-specific gene redD during S. coelicolor cell cultivation. The corresponding mutant S. coelicolor lyqRY1522 carrying redD::eyfp in the chromosome was constructed. The temporal expression results of the fusion protein during submerged cultivation demonstrated that expression of redD began in the transition phase, continuing through the exponential growth phase to the stationary phase, and reached maximum in the stationary phase. On the other hand, redD was expressed only in substrate mycelia during solid-state culture, while aerial mycelia remained essentially non-fluorescent throughout culture. Results demonstrated that the expression pattern of redD coincides with that of the biosynthesis of the antibiotics during culture, revealing a direct correlation between the spatio-temporal distribution of regulatory gene expression and second metabolism.
Anti-Bacterial Agents
;
biosynthesis
;
Bacterial Proteins
;
genetics
;
metabolism
;
Gene Expression Profiling
;
Gene Expression Regulation, Bacterial
;
physiology
;
Mutation
;
Signal Transduction
;
physiology
;
Streptomyces coelicolor
;
genetics
;
metabolism
;
Trans-Activators
;
genetics
;
metabolism