1.Genome sequencing of Streptomyces aureofaciens DM-1 and analysis of 6-demethylchlortetracycline biosynthesis gene cluster.
Naxin WU ; He HUANG ; Taoling MIN ; Haifeng HU
Chinese Journal of Biotechnology 2020;36(12):2685-2694
Streptomyces aureofaciens DM-1 is a high-yielding 6-demethylchlortetracycline producer. The genome sequencing of DM-1 reveals a linear chromosome containing 6 824 334 bps nucleotides with GC content of 72.6%. In this genome, a total of 6 431 open reading frames were predicted by using glimmer 3.02, Genemark and Z-Curve softwares. Twenty-eight secondary metabolite biosynthetic gene clusters were uncovered by using AntiSMASH gene prediction software, including the complete 6-demethylchlortetracycline biosynthetic gene cluster. A frame-shift mutation in methyltransferase coding region was detected, which may result in the demethylation of chlortetracycline. The complete genome sequence of S. aureofaciens DM-1 provides basic information for functional genomics studies and selection of high-yielding strains for 6-demethylchlortetracycline.
Base Sequence
;
Chlortetracycline
;
Demeclocycline
;
Multigene Family/genetics*
;
Streptomyces aureofaciens/genetics*
2.Application of element and metabolism balancing for the cultivation process with Streptomyces aureofaciens.
Jiao-Long FU ; Ying-Ping ZHUANG ; Ming-Zhi HUANG ; Ju CHU ; Si-Liang ZHANG
Chinese Journal of Biotechnology 2003;19(4):471-475
On the base of element and metablism balancing, the mathematical model of the cultivation process with Streptomyces aureofaciens was developed, and the unknown parameters in the model were estimated with the method of nonlinear optimization. Firstly the energetic coefficient of CTC biosynthesis was gained, which was 1.8 - 2.8 mol-ATP x C-mol(-1). The macroscopic reaction rates were predicted in the process and compared with the experimental values. The results show that the model can preferably describe the relationships between several macroscopic reaction rates in the process and can supervise the optimization of CTC fermentation process theoretically.
Chlortetracycline
;
metabolism
;
Fermentation
;
physiology
;
Models, Theoretical
;
Streptomyces aureofaciens
;
growth & development
;
metabolism