1.Heterologous expression and enzymatic analysis of Streptomyces griseus trypsin in Streptomyces lividans.
Tengbo MA ; Zhenmin LING ; Zhen KANG ; Jianghua LI ; Guocheng DU ; Jian CHEN
Chinese Journal of Biotechnology 2013;29(4):466-479
Trypsin as an important serine protease has been widely used in food, pharmaceutical and tanning industries. In this study, we successfully expressed trypsin (cloning from Streptomyces griseus ATCC10137) in Streptomyces lividans TK24 and comparatively investigated its enzymatic properties. Specifically, applying S. griseus ATCC 10137 genome as template, we obtained the sprT gene and sub-cloned it into the expression plasmid pIJ86, generating the recombinant strain S. lividans TK24/pIJ86-sprT. When cultivated in R2YE and SELF, the activity of rSGT reached 9.21 U/mL and 8.61 U/mL, respectively. Meanwhile, the results of the enzymatic analysis showed that rSGT exhibited a higher acid tolerance and a higher specificity to hydrolyze amide bonds compared with bovine trypsin (BT). In addition, Zn2+ and organic solvents up-regulated esterase and amidase of rSGT. Taken together, the results obtained herein provide meaningful information for further modification of rSGT and its industrial application.
Fermentation
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Streptomyces griseus
;
enzymology
;
Streptomyces lividans
;
genetics
;
metabolism
;
Trypsin
;
biosynthesis
;
genetics
2.Advances in actinobacterial proteomics.
Yao ZHANG ; Ping XU ; Wenjun LI ; Yong TAO
Chinese Journal of Biotechnology 2014;30(7):1044-1058
Protein is the executor of physiological function, and direct embodiment of the life phenomena. Proteomics aims to systematically clarify all or parts of proteins' role and function in life movement. In post genome era, proteomics began to play more important role in life science field. Actinobacteria are closely linked to human production and life, which have produced many clinically important secondary metabolites, including antibiotics, antitumorals and enzymes. Actinobacterial systematics and its model organism Streptomyces coelicolor in 2001 genome sequence laid the foundation for further functional genomic studies. Actinobacterial proteomics was more directly and exactly to interpret the activity of life than genomics and transcriptomics, which grew much faster and received so much attention from scientists in the near years. Complex morphological differention, stronge environment adaptiveness, nitrogen-fixing capacity, metabolic mechanism, pathogenicity and natural produces' discovery were systematically reviewed in this study, which was expected to be the basis for promoting Actinobacterial proteomics study in the near future.
Actinobacteria
;
genetics
;
metabolism
;
Genomics
;
Proteomics
;
Streptomyces coelicolor
;
genetics
;
metabolism
3.Improvement of natural product production in Streptomyces by manipulating pathway-specific regulators.
Wan XIONG ; Yanwen DUAN ; Xiaohui YAN ; Yong HUANG
Chinese Journal of Biotechnology 2021;37(6):2127-2146
Streptomyces are major sources of bioactive natural products. Genome sequencing reveals that Streptomyces have great biosynthetic potential, with an average of 20-40 biosynthetic gene clusters each strain. However, most natural products from Streptomyces are produced in low yields under regular laboratory cultivation conditions, which hamper their further study and drug development. The production of natural products in Streptomyces is controlled by the intricate regulation mechanisms. Manipulation of the regulatory systems that govern secondary metabolite production will strongly facilitate the discovery and development of natural products of Streptomyces origin. In this review, we summarize progresses in pathway-specific regulators from Streptomyces in the last five years and highlight their role in improving the yields of corresponding natural products.
Biological Products
;
Multigene Family
;
Secondary Metabolism
;
Streptomyces/genetics*
4.Enzymatic production of α-ketoglutaric acid by L-glutamate oxidase from L-glutamic acid.
Panqing NIU ; Zhenyu ZHANG ; Liming LIU
Chinese Journal of Biotechnology 2014;30(8):1318-1322
We produced α-ketoglutaric acid (α-KG) from L-glutamic acid, using enzymatic transformation approach with L-glutamate oxidase (LGOX). First, wild strain Streptomyces sp. FMME066 was mutated with NTG, a genetically stable mutant Streptomyces sp. FMME067 was obtained. Under the optimal nutrition conditions with fructose 10 g/L, peptone 7.5 g/L, KH2PO4 1 g/L and CaCl2 0.05 g/L, the maximum LGOX activity reached 0.14 U/mL. The LGOX was stable to pH and temperature, and Mn2+ had a stimulating effect. Finally, after 24 h enzymatic conversion under the optimal conditions, the maximum titer of α-KG reached 38.1 g/L from 47 g/L L-glutamic acid. Enzymatic transformation by LGOX is a potential approach for α-KG production.
Amino Acid Oxidoreductases
;
metabolism
;
Fermentation
;
Glutamic Acid
;
metabolism
;
Ketoglutaric Acids
;
metabolism
;
Streptomyces
;
genetics
;
metabolism
5.Engineering the precursor supply pathway in Streptomyces gilvosporeus for overproduction of natamycin.
Dezhen KONG ; Hao LI ; Xiaojie LI ; Zhoujie XIE ; Hao LIU
Chinese Journal of Biotechnology 2022;38(12):4630-4643
Natamycin is a safe and efficient antimycotics which is widely used in food and medicine industry. The polyene macrolide compound, produced by several bacterial species of the genus Streptomyces, is synthesized by type Ⅰ polyketide synthases using acetyl-CoA, malonyl-CoA, and methylmalonyl-CoA as substrates. In this study, four pathways potentially responsible for the supply of the three precursors were evaluated to identify the effective precursor supply pathway which can support the overproduction of natamycin in Streptomyces gilvosporeus, a natamycin-producing wild-type strain. The results showed that over-expressing acetyl-CoA synthetase and methylmalonyl-CoA mutase increased the yield of natamycin by 44.19% and 20.51%, respectively, compared with the wild type strain under shake flask fermentation. Moreover, the yield of natamycin was increased by 66.29% compared with the wild-type strain by co-overexpression of acetyl-CoA synthetase and methylmalonyl-CoA mutase. The above findings will facilitate natamycin strain improvement as well as development of strains for producing other polyketide compounds.
Natamycin/metabolism*
;
Methylmalonyl-CoA Mutase/metabolism*
;
Acetyl Coenzyme A/metabolism*
;
Streptomyces/genetics*
;
Polyketide Synthases/metabolism*
6.Shunt products of aminoansamycins from aas1 overexpressed mutant strain of Streptomyces sp. S35.
Li-Ping DAI ; Zi-Shen WANG ; Hao-Xin WANG ; Chun-Hua LU ; Yue-Mao SHEN
Chinese Journal of Natural Medicines (English Ed.) 2020;18(12):952-956
Constitutively expression of the pathway-specific activators is an effective method to activate silent gene clusters and improve natural product production. In this study, nine shunt products of aminoansamycins (1-9) were identified from a recombinant mutant strain S35-LAL by overexpressed the large-ATP-binding regulator of the LuxR family (LAL) gene aas1 in Streptomyces sp. S35. All the compounds showed no anti-microbial, anti-T3SS and cytotoxic activities.
Biological Products/metabolism*
;
Lactams, Macrocyclic/metabolism*
;
Multigene Family
;
Organisms, Genetically Modified
;
Streptomyces/metabolism*
7.Lysohexaenetides A and B, linear lipopeptides from Lysobacter sp. DSM 3655 identified by heterologous expression in Streptomyces.
Qiushuang XU ; Haochen ZOU ; Chen PAN ; Haoxin WANG ; Yuemao SHEN ; Yaoyao LI
Chinese Journal of Natural Medicines (English Ed.) 2023;21(6):454-458
Lysobacter harbors a plethora of cryptic biosynthetic gene clusters (BGCs), albeit only a limited number have been analyzed to date. In this study, we described the activation of a cryptic polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) gene cluster (lsh) in Lysobacter sp. DSM 3655 through promoter engineering and heterologous expression in Streptomyces sp. S001. As a result of this methodology, we were able to isolate two novel linear lipopeptides, lysohexaenetides A (1) and B (2), from the recombinant strain S001-lsh. Furthermore, we proposed the biosynthetic pathway for lysohexaenetides and identified LshA as another example of entirely iterative bacterial PKSs. This study highlights the potential of heterologous expression systems in uncovering cryptic biosynthetic pathways in Lysobacter genomes, particularly in the absence of genetic manipulation tools.
Lysobacter/metabolism*
;
Streptomyces/metabolism*
;
Lipopeptides/metabolism*
;
Polyketide Synthases/genetics*
;
Multigene Family
8.Expression of 4"-O-isovaleryltransferase gene from Streptomyces thermotolerans in Streptomyces lividans TK24.
Jiahu ZHANG ; Jingjing ZHONG ; Jianlu DAI ; Yiguang WANG ; Huanzhang XIA ; Weiqing HE
Chinese Journal of Biotechnology 2014;30(9):1390-1400
4"-O-isovaleryltransferase gene (ist) was regulated by positive regulatory genes of midecamycin 4"-O-propionyltransferase gene (mpt) in Streptomyces lividans TK24. A BamH I ~8.0 kb fragment from Streptomyces mycarofaciens 1748 was proved that it contained mpt gene and linked with two positive regulatory genes, orf27 and orf28. Orf of mpt was replaced by orf of ist and linked with two regulatory genes or orf27 single, and individually cloned into the vectors pKC1139 or pWHM3 (high copy number), and then transformed into S. lividans TK24. The levels of mpt and ist expression were evaluated by the bio-tramsformation efficacy of spiramycin into 4"-O-acylspiramycins in these transformants. The results showed that 4"-O-isovalerylspiramycins could be detected only in the transformants containing the plasmids constructed with pWHM3. The efficacy of bio-transformation of the transformants containing two regulatory genes was higher than that of orf27 single. So, the positive regulatory genes system of mpt gene could enhance ist gene expression.
Acyltransferases
;
genetics
;
metabolism
;
Bacterial Proteins
;
genetics
;
metabolism
;
Gene Expression
;
Genetic Vectors
;
Plasmids
;
Spiramycin
;
analogs & derivatives
;
biosynthesis
;
Streptomyces
;
enzymology
;
genetics
;
Streptomyces lividans
;
metabolism
;
Transformation, Genetic
9.Application of element and metabolism balancing for the cultivation process with Streptomyces aureofaciens.
Jiao-Long FU ; Ying-Ping ZHUANG ; Ming-Zhi HUANG ; Ju CHU ; Si-Liang ZHANG
Chinese Journal of Biotechnology 2003;19(4):471-475
On the base of element and metablism balancing, the mathematical model of the cultivation process with Streptomyces aureofaciens was developed, and the unknown parameters in the model were estimated with the method of nonlinear optimization. Firstly the energetic coefficient of CTC biosynthesis was gained, which was 1.8 - 2.8 mol-ATP x C-mol(-1). The macroscopic reaction rates were predicted in the process and compared with the experimental values. The results show that the model can preferably describe the relationships between several macroscopic reaction rates in the process and can supervise the optimization of CTC fermentation process theoretically.
Chlortetracycline
;
metabolism
;
Fermentation
;
physiology
;
Models, Theoretical
;
Streptomyces aureofaciens
;
growth & development
;
metabolism
10.N01WA-735E, a human leukocyte elastase inhibitor from metabolites of microorganisms.
Ya-Shan WEI ; Hua ZHANG ; Xin-Hua LU ; Yue-Sheng DONG ; Bao-Hua ZHAO
Chinese Journal of Biotechnology 2007;23(6):1112-1115
Human leukocyte elastase is an important selection target of inflammation and cancer. In this paper, a high throughput screening model was established for screening human leukocyte elastase inhibitors from thousands of strains of actinomycetes. As a result, a strain, N01WA-735 with potent suppression activity was isolated. Firstly, the strain N01WA-735 was identified as Streptomyces according to morphology and biochemical analysis. The Streptomyces N01WA-735 was processed by solvent extraction, silica column chromatography, Sephadex LH-20 column chromatography and crystallization to get a pure active compound named N01WA-735E. Its chemical structure was elucidated as the same as that of the compound named BE-52440A by physicochemical properties and spectral data of UV, MS, 1H-NMR and 13C-NMR respectively. The compound showed a strong inhibitory activity against human leukocyte elastase with IC50 of 3.02 micromol/L. The compound is reported as a human leukocyte elastase inhibitor for the first time.
Humans
;
Leukocyte Elastase
;
antagonists & inhibitors
;
Protease Inhibitors
;
isolation & purification
;
metabolism
;
Streptomyces
;
isolation & purification
;
metabolism