1.Metabolic reprogramming by glutathione S-transferase enhances environmental adaptation of Streptococcus mutans.
Haoyue ZHENG ; Xian PENG ; Jing ZOU
West China Journal of Stomatology 2025;43(5):728-735
OBJECTIVES:
This study aims to investigate the impact of glutathione S-transferase (GST) on the environmental adaptability of Streptococcus mutans (S. mutans).
METHODS:
A GST knockout strain ΔgsT was constructed. Transcriptomic sequencing was performed to analyze the gene expression differences between the wild-type S. mutans UA159 and its GST knockout strain ΔgsT. Comprehensive functional assessments, including acid tolerance assays, hydrogen peroxide challenge assays, nutrient limitation growth assays, and fluorescence in situ hybridization, were conducted to evaluate the acid tolerance, antioxidant stress resistance, growth kinetics, and interspecies competitive ability of ΔgsT within plaque biofilms.
RESULTS:
Compared with the wild-type S. mutans, 198 genes in ΔgsT were significantly differentially expressed and enriched in pathways related to metabolism, stress response, and energy homeostasis. The survival rate of ΔgsT in acid tolerance assays was markedly reduced (P<0.01). After 15 min of hydrogen peroxide challenge, the survival rate of ΔgsT decreased to 38.12% (wild type, 71.75%). Under nutrient-limiting conditions, ΔgsT exhibited a significantly lower final OD600 value than the wild-type strain (P<0.05). In the biofilm competition assays, the proportion of S. mutans ΔgsT in the mixed biofilm (8.50%) was significantly lower than that of the wild type (16.89%) (P<0.05).
CONCLUSIONS
GST enhances the acid resistance, oxidative stress tolerance, and nutrient adaptation of S. mutans by regulating metabolism-related and stress response-related genes.
Streptococcus mutans/enzymology*
;
Biofilms
;
Glutathione Transferase/physiology*
;
Adaptation, Physiological
;
Hydrogen Peroxide/pharmacology*
;
Gene Expression Regulation, Bacterial
;
Oxidative Stress
;
Metabolic Reprogramming
2.Streptococcus pneumoniae induces SPLUNC1 and the regulatory effects of resveratrol.
Yan-Ping SHANG ; Li LIN ; Chang-Chong LI
Chinese Journal of Contemporary Pediatrics 2017;19(1):111-116
OBJECTIVETo investigate the host-defense role of short palate, lung, and nasal epithelium clone 1 (SPLUNC1) in Streptococcus pneumoniae (SP) infection and the effect of resveratrol (Res) on SPLUNC1 expression, and to provide new thoughts for the treatment of diseases caused by SP infection.
METHODSAccording to the multiplicity of infection (MOI), BEAS-2B cells with SP infection were divided into control group, MOI20 SP group, and MOI50 SP group. According to the different concentrations of Res, the BEAS-2B cells with MOI20 SP infection pretreated by Res were divided into 12.5Res+SP group, 25Res+SP group, and 50Res+SP group (the final concentrations of Res were 12.5, 25, and 50 μmol/L, respectively). Cell Counting Kit-8 was used to measure cell activity and determine the optimal concentration and action time of SP and Res. In the formal experiment, the cells were divided into control group, Res group, SP group, and Res+SP group. Real-time PCR and ELISA were used to measure the mRNA and protein expression of SPLUNC1.
RESULTSOver the time of SP infection, cell activity tended to decrease. Compared with the control group and the MOI20 SP group, the MOI50 SP group had a reduction in cell activity. Compared with the MOI20 SP group, the 25Res+SP group had increased cell activity and the 50Res+SP group had reduced cell activity (P<0.05). MOI20 SP bacterial suspension and 25 μmol/L Res were used for the formal experiment. Over the time of SP infection, the mRNA expression of SPLUNC1 in BEAS-2B cells firstly increased and then decreased in the SP group and the Res+SP group (P<0.05). Compared with the SP group, the Res+SP group had significant increases in the mRNA and protein expression of SPLUNC1 at all time points (P<0.05). Compared with the control group, the Res group had no significant changes in the mRNA and protein expression of SPLUNC1 (P>0.05).
CONCLUSIONSSP infection can induce SPLUNC1 expression and the host-defense role of SPLUNC1. Res can upregulate SPLUNC1 expression during the development of infection and enhance cell protection in a concentration- and time-dependent manner.
Bronchi ; metabolism ; Cells, Cultured ; Cytoprotection ; Epithelial Cells ; metabolism ; Glycoproteins ; analysis ; genetics ; physiology ; Humans ; Phosphoproteins ; analysis ; genetics ; physiology ; RNA, Messenger ; analysis ; Stilbenes ; pharmacology ; Streptococcus pneumoniae ; pathogenicity
3.Three new anthraquinone derivatives isolated from Symplocos racemosa and their antibiofilm activity.
Umar FAROOQ ; Sara KHAN ; Sadia NAZ ; Ajmal KHAN ; Afsar KHAN ; Ayaz AHMED ; Abdur RAUF ; Syed Majid BUKHARI ; Shujaat Ali KHAN ; Arfa KAMIL ; Nadia RIAZ ; Abdur Rahman KHAN
Chinese Journal of Natural Medicines (English Ed.) 2017;15(12):944-949
Three new alkyl substituted anthraquinone derivatives, trivially named as symploquinones A-C (Compounds 1-3) were isolated from Symplocos racemosa. The structures of these compounds were determined on the basis of extensive spectroscopic analyses (UV, IR, Mass, H- and C-NMR, and two-dimensional (2D) NMR techniques). The resulting data were also compared with the reported literature. These compounds were then subjected to antibacterial or antibiofilm testing. Compounds 1 and 3 exhibited good antibacterial activity in the concentration range of 160-83 μg·mL against Streptococcus mutans, methicillin resistant Staphylococcus aureus and Proteus mirabilis. Both compounds were further screened for anti-biofilm activity, which revealed promising activities at sub-MIC concentrations. None of the compounds were found to be active against Klebsiella pneumoniae.
Anthraquinones
;
chemistry
;
isolation & purification
;
pharmacology
;
Anti-Bacterial Agents
;
chemistry
;
isolation & purification
;
pharmacology
;
Biofilms
;
drug effects
;
growth & development
;
Ericales
;
chemistry
;
Magnetic Resonance Spectroscopy
;
Mass Spectrometry
;
Methicillin-Resistant Staphylococcus aureus
;
drug effects
;
physiology
;
Microbial Sensitivity Tests
;
Proteus mirabilis
;
drug effects
;
physiology
;
Spectrophotometry, Infrared
;
Streptococcus mutans
;
drug effects
;
physiology
4.Effect of ptxA and ptxB genes of phosphotransferase system on growth of Streptococcus mutans.
Xinyu WU ; Xiaodan CHEN ; Wanghong ZHAO ; Jin HOU ; Xuan CHEN
West China Journal of Stomatology 2016;34(3):302-306
OBJECTIVEThis study aims to evaluate the effect of ptxA and ptxB genes, which are important genes in the L-ascorbate phosphotransferase system (PTS) of Streptococcus mutans (S. mutans).
METHODSThe ptxA-, ptxB-, and ptxAB-double deficient mutant as well as ptxAB-complemented strain were constructed. Quantitative real-time polymerase chain reaction analysis was performed to evaluate the expression of the target genes of wild-type S. mutans when L-ascorbate was used as the sole carbohydrate source. The OD₆₀₀ values of the wild type, deficient, and complemented strains were continuously monitored, and their growth curves were constructed to compare growth capacity.
RESULTSPolymerase chain reaction and sequencing analyses suggested that deficient and complemented strains were successfully constructed. The expression levelsof ptxA and ptxB significantly increased (P < 0.01) when L-ascorbate was used as the sole carbohydrate source. The growth capacity of the deficient mutants decreased compared with that of the wild-type strain. However, the wild-type phenotype could be restored in the complemented strain.
CONCLUSIONptxA and ptxB genes are associated with L-ascorbate metabolism of S. mutans. The construction of deficient strains and complemented strain lay a foundation for further mechanism study on L-ascorbate metabolism in S. mutans.
Bacterial Proteins ; genetics ; Genes, Bacterial ; Phosphotransferases ; metabolism ; Real-Time Polymerase Chain Reaction ; Streptococcus mutans ; physiology ; Transcription Factors ; genetics
5.Effect of stiffness of polyelectrolyte multilayer on titanium surface on bacterium adhesion.
Qiong WANG ; Wei TENG ; Qinmei WANG ; Hongzhang HUANG
Chinese Journal of Stomatology 2016;51(3):166-171
OBJECTIVETo provide a theoretical basis for surface modification of titanium implants, the effects of the stiffness of polyelectrolyte multilayer films on titanium surface on bacterium adhesion was explored.
METHODSVia layer-by-layer technique, catechol functionalized polyelectrolyte multilayer film (cPEM) was constructed on titanium surface by using catechol functionalized hyaluronic acid (cHA) and lipopolysaccharide-amine nanopolymersomes (NP). The stiffness of cPEM was controlled by adjusting the catechol substitution degree of cHA (5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%). Titanium samples covered with cPEM were selected as test group, and the cPEM was constructed with the lowest, medium and highest stiffness. The polished titanium was used as a control. The surface topography of titanium before and after film construction was observed by scanning electron microscopy (SEM). At 1 and 24 h after incubation, the adhesion and clonal formation of Streptococcus mutans (S. mutans) on different titanium surfaces were quantified, and their morphology and survival status were observed by SEM and laser scanning confocal microscope (LSCM).
RESULTSWhen the catechol grafting ratio was 5%, 30% and 70%, the lowest, medium and highest cPEM stiffness were obtained, and the cPEM stiffness were (10.69±4.54) GPa(cPEM-L), (20.99± 5.81) GPa (cPEM-M) and (32.57±6.93) GPa (cPEM-H) respectively, and the stiffness of polished titanium was (107.12±8.68) GPa (P<0.05). SEM observation showed that after cPEM coating, the titanium surface became smoother. After incubation for 1 and 24 h, the amount of adhesion and clonal formation of S. mutans on cPEM were higher than those on control titanium, and the difference was statistically significant (P<0.05). SEM images showed that for 1 h incubation, softer surfaces were beneficial for S. mutans adhering and agglomerating, while this difference nearly disappeared at 24 h. Observation under LSCM revealed that most of bacteria were alive on titanium disks at 1 h, and their amount decreased with the increase of stiffness. At 24 h, the living/dead bacterium ratios on cPEM-L and control titanium was higher than that on cPEM-M and cPEM-H, and cPEM-L surface was dominated by living bacteria, while stiffer cPEM-M and cPEM-H had more dead bacteria than living bacteria.
CONCLUSIONSIncreasing the stiffness of polyelectrolyte films on titanium limits the adhesion of S. mutans. As an independent factor, stiffness influences the bacterium adhesion.
Bacterial Adhesion ; Catechols ; Elasticity ; Hyaluronic Acid ; Lipopolysaccharides ; Microscopy, Confocal ; Microscopy, Electron, Scanning ; Nanoparticles ; Polymers ; chemistry ; Streptococcus mutans ; physiology ; Surface Properties ; Time Factors ; Titanium ; chemistry
6.Effect of extracellular DNA on the formation of Streptococcus mutans biofilm under sucrose environment.
Yuqin LI ; Yuan DU ; Jing YE ; Bin WANG ; Ying LIU
Chinese Journal of Stomatology 2016;51(2):81-86
OBJECTIVETo study the effect of extracellular DNA(eDNA) on the formation of Streptococcus mutans(Sm) biofilms during different growth periods in sucrose environment.
METHODSSm biofilms were established on smooth glass surfaces under the environment of 1% sucrose and cultured in the condition of 37 ℃, 5% O2, 85% N2 and 10% CO2. Samples were randomly divided into four groups based on fourculture time(6,12, 24 and 48 h), respectively. Each group was further divided into two subgroups: control group(without deoxyribonuclease Ⅰ[DNaseⅠ] treatment) and test group(with DNaseⅠtreatment). DNaseⅠ was added 1 h advance in the treatment group to a final concentration of 100 U/ml. Each sample was stained with mixed SYTO-9/PI fluorescent dye. Confocal laser scanning microscopy was used for biofilm observation and scanning. The total biomass, the thickness and the volume of red fluorescence of each biofilm sample were measured following three-dimensional reconstruction using the softwear of Imaris 7.2.3.
RESULTSUnder the environment of 1% sucrose, the Sm bacterial adhesion and distribution density increased over time, the quantity of eDNA and membrane-damaged bacteria which were indicated by red fluorescence also increased within 24 h but dropped later. The biofilm biomasses of Sm biofilm in 6, 12, 24 and 48 h DNaseⅠ treatment group reduced significantly(P<0.05) compared to those in the corresponding control groups by 81.3%, 85.0%, 90.1% and 12.4%, respectively. The biofilm thicknesses in each DNase Ⅰ treatment group (except 6 h group) also reduced significantly(P<0.05) compared to those in the corresponding control group by 34.4%, 45.6% and 23.6%, respectively. The quantities of eDNA and membrane-damaged bacteria reduced in each treatment group except 48 h group compared to that in the corresponding control group.
CONCLUSIONSUnder the environment of 1% sucrose, eDNA plays an important role in promoting the formation of Sm biofilm.
Bacterial Adhesion ; drug effects ; Biofilms ; growth & development ; DNA ; physiology ; Deoxyribonuclease I ; pharmacology ; Microscopy, Confocal ; Streptococcus mutans ; physiology ; Sucrose ; Sweetening Agents ; Temperature
8.Role of sortase in Streptococcus mutans under the effect of nicotine.
Ming-Yun LI ; Rui-Jie HUANG ; Xue-Dong ZHOU ; Richard L GREGORY
International Journal of Oral Science 2013;5(4):206-211
Streptococcus mutans is a common Gram-positive bacterium and plays a significant role in dental caries. Tobacco and/or nicotine have documented effects on S. mutans growth and colonization. Sortase A is used by many Gram-positive bacteria, including S. mutans, to facilitate the insertion of certain cell surface proteins, containing an LPXTGX motif such as antigen I/II. This study examined the effect of nicotine on the function of sortase A to control the physiology and growth of S. mutans using wild-type S. mutans NG8, and its isogenic sortase-defective and -complemented strains. Briefly, the strains were treated with increasing amounts of nicotine in planktonic growth, biofilm metabolism, and sucrose-induced and saliva-induced antigen I/II-dependent biofilm formation assays. The strains exhibited no significant differences with different concentrations of nicotine in planktonic growth assays. However, they had significantly increased (P≤0.05) biofilm metabolic activity (2- to 3-fold increase) as the concentration of nicotine increased. Furthermore, the sortase-defective strain was more sensitive metabolically to nicotine than the wild-type or sortase-complemented strains. All strains had significantly increased sucrose-induced biofilm formation (2- to 3-fold increase) as a result of increasing concentrations of nicotine. However, the sortase-defective strain was not able to make as much sucrose- and saliva-induced biofilm as the wild-type NG8 did with increasing nicotine concentrations. These results indicated that nicotine increased metabolic activity and sucrose-induced biofilm formation. The saliva-induced biofilm formation assay and qPCR data suggested that antigen I/II was upregulated with nicotine but biofilm was not able to be formed as much as wild-type NG8 without functional sortase A.
Amino Acid Motifs
;
Aminoacyltransferases
;
drug effects
;
genetics
;
Antigens, Bacterial
;
drug effects
;
Bacterial Adhesion
;
drug effects
;
Bacterial Proteins
;
drug effects
;
genetics
;
Biofilms
;
drug effects
;
Cysteine Endopeptidases
;
drug effects
;
genetics
;
Dose-Response Relationship, Drug
;
Humans
;
Mutation
;
genetics
;
Nicotine
;
administration & dosage
;
pharmacology
;
Peptidoglycan
;
drug effects
;
genetics
;
Saliva
;
physiology
;
Streptococcus mutans
;
drug effects
;
enzymology
;
growth & development
;
Sucrose
;
pharmacology
9.Long-term survival of salivary streptococci on dental devices made of ethylene vinyl acetate.
Taiji OGAWA ; Sayaka YAMASAKI ; Mariko HONDA ; Yutaka TERAO ; Shigetada KAWABATA ; Yoshinobu MAEDA
International Journal of Oral Science 2012;4(1):14-18
Bacterial infection associated with the use of medical or dental devices is a serious concern. Although devices made of ethylene vinyl acetate (EVA) are often used in the oral cavity, there are no established standards for their storage. We investigated bacterial survival on EVA sheets under various storage conditions to establish a standard for hygienic storage of such dental devices. Bacterial counts were evaluated, which showed a significant decrease after washing with sterilized water, mechanical brushing and rinsing, and using Mouthguard Cleaner as compared to untreated samples. In addition, no bacteria were detected on samples stored 2 days or longer in a ventilated environment, whereas they were detected for up to 14 days on samples without any cleaning stored in a closed environment. Bacterial counts for the untreated samples gradually declined, while surviving bacteria on samples treated with sterilized water and mechanical brushing showed a rapid decrease. Additionally, bacterial identification using polymerase chain reaction (PCR) revealed that Streptococcus oralis was dominantly detected on salivary samples after 14 days of storage among both two subjects. For effective hygienic storage of dental devices made of EVA, washing with sterilized water is important to remove absorbed salivary compounds along with storage in a ventilated environment.
Adult
;
Colony Count, Microbial
;
Decontamination
;
methods
;
Dental Equipment
;
microbiology
;
Equipment Contamination
;
Humans
;
Microbial Viability
;
Molecular Typing
;
Polyvinyls
;
Saliva
;
microbiology
;
Streptococcus
;
physiology
;
Time Factors
;
Water
;
Young Adult
10.Influence of glucose concentration on the inhibition of Streptococcus oligofermentans on Streptococcus mutans.
Ying LIU ; Fei WU ; Lei CHU ; Ke-ke XIA ; Ying-hui WANG ; Li-geng WU
Chinese Journal of Stomatology 2012;47(1):43-47
OBJECTIVETo investigate the inhibition of Streptococcus oligofermentans (So) on Streptococcus mutans (Sm) and the producibility of hydrogen peroxide by So under the influence of glucose concentration environment.
METHODSThe inhibition between So and Sm was observed by plating method under the different glucose concentration environment. The initial synthesis rates and production of hydrogen peroxide by So were determined under the different glucose concentration environment by 4-aminoantipyine-horseradish peroxidase method at A(510).
RESULTSUnder 0, 10 and 50 mmol/L glucose environment, the inhibition of So on Sm was evident. When both Sm and So were inoculated at the same time, the ratio of inhibition area by bacterial membrane area was 0.202 ± 0.005, 0.467 ± 0.025, 0.468 ± 0.028 under 0, 10, 50 mmol/L glucose environment. When So was cultivated first and then Sm applied, the ratio was 0.394 ± 0.004, 0.811 ± 0.075 and 0.816 ± 0.007 under 0, 10 and 50 mmol/L glucose environment respectively. The inhibition under 10 and 50 mmol/L glucose environment were more significant than that under non-glucose environment. There was no significant difference between these two glucose concentrations (P > 0.05). The initial synthesis rates of H2O2 by So under the 10 mmol/L [(23.573 ± 0.263) µmo×L(-1)×min(-1)] and 50 mmol/L [(23.337 ± 0.473) µmol×L(-1)×min(-1)] glucose were higher than without glucose[(10.513 ± 0.516) µmol×L(-1)×min(-1)], P < 0.05. H2O2 was not detected in 1000 mmol/L glucose. However, the production of H2O2 by So under 0 mmol/L glucose was higher than other glucose concentrations (P < 0.05).
CONCLUSIONSThe capability of the inhibition of So on Sm was affected by glucose environment and was much stronger under certain glucose concentrations (10, 50 mmol/L).
Antibiosis ; Dose-Response Relationship, Drug ; Glucose ; metabolism ; Hydrogen Peroxide ; metabolism ; Streptococcus ; growth & development ; metabolism ; physiology ; Streptococcus mutans ; growth & development ; metabolism

Result Analysis
Print
Save
E-mail