1.Epididymis cell atlas in a patient with a sex development disorder and a novel NR5A1 gene mutation.
Jian-Wu SHI ; Yi-Wen ZHOU ; Yu-Fei CHEN ; Mei YE ; Feng QIAO ; Jia-Wei TIAN ; Meng-Ya ZHANG ; Hao-Cheng LIN ; Gang-Cai XIE ; Kin Lam FOK ; Hui JIANG ; Yang LIU ; Hao CHEN
Asian Journal of Andrology 2023;25(1):103-112
This study aims to characterize the cell atlas of the epididymis derived from a 46,XY disorders of sex development (DSD) patient with a novel heterozygous mutation of the nuclear receptor subfamily 5 group A member 1 (NR5A1) gene. Next-generation sequencing found a heterozygous c.124C>G mutation in NR5A1 that resulted in a p.Q42E missense mutation in the conserved DNA-binding domain of NR5A1. The patient demonstrated feminization of external genitalia and Tanner stage 1 breast development. The surgical procedure revealed a morphologically normal epididymis and vas deferens but a dysplastic testis. Microfluidic-based single-cell RNA sequencing (scRNA-seq) analysis found that the fibroblast cells were significantly increased (approximately 46.5%), whereas the number of main epididymal epithelial cells (approximately 9.2%), such as principal cells and basal cells, was dramatically decreased. Bioinformatics analysis of cell-cell communications and gene regulatory networks at the single-cell level inferred that epididymal epithelial cell loss and fibroblast occupation are associated with the epithelial-to-mesenchymal transition (EMT) process. The present study provides a cell atlas of the epididymis of a patient with 46,XY DSD and serves as an important resource for understanding the pathophysiology of DSD.
Male
;
Humans
;
Epididymis
;
Disorder of Sex Development, 46,XY/genetics*
;
Disorders of Sex Development
;
Mutation
;
Mutation, Missense
;
Steroidogenic Factor 1/genetics*
2.Genetic analysis of 46,XY disorders of sex development in children caused by a new NR5A1 gene variant.
Long GAO ; Ping WANG ; Mingying ZHANG ; Ying QIAN ; Nan LIU ; Xiaowei XU ; Xuetao WANG ; Jianbo SHU ; Ling LYU
Chinese Journal of Medical Genetics 2021;38(11):1123-1126
OBJECTIVE:
To explore the genetic basis for a child with 46,XY disorders of sex development (DSD) and explore its genotype-phenotype correlation.
METHODS:
The child was subjected to whole exome sequencing (WES), and exons 1 to 7 of NR5A1 were subjected to multiplex ligation-dependent probe amplification (MLPA) analysis.
RESULTS:
The patient presented with rudimentary vulva of a female with Tanner stage 1. B-mode ultrasonography has detected ovary and uterus. The child was found to have a chromosome karyotype of 46,XY. WES revealed that the patient has harbored heterozygous deletion of exon 5 of the NR5A1 gene, which was a novel pathogenic variant inherited from the mother. No abnormality was found in the father.
CONCLUSION
The main symptoms of 46,XY DSD children are insufficient external genitalia masculinization, for which variants of the NR5A1 gene are an important cause. WES has improved the detection rate of genetic variants and provided a solid basis for genetic counseling of the affected families.
Child
;
Disorder of Sex Development, 46,XY/genetics*
;
Disorders of Sex Development/genetics*
;
Exons/genetics*
;
Female
;
Genetic Testing
;
Heterozygote
;
Humans
;
Mutation
;
Steroidogenic Factor 1/genetics*
3.Construction of directional differentiation model from mouse embryonic stem cells to Leydig-like cells in vitro.
Ying-ying ZHANG ; Ya-dong HUANG ; Ren-shan GE ; Dan-yan ZHU
Journal of Zhejiang University. Medical sciences 2012;41(4):386-392
OBJECTIVETo construct a directional differentiation model from mouse embryonic stem cells into leydig-like cells in vitro.
METHODSMouse ES-D3 cells were transfected with plasmid containing steroidogenic factor 1 (SF-1) gene, then treated with RA and 8Br-cAMP, while the cells transfected with empty plasmid were used as the negative controls. The morphology of leydig-like cells differentiated from ES-D3 cells was observed with light microscopy. The expression levels of StAR, P450scc and 3β-HSD were detected by RT-PCR, Western Blot and fluorescence microscopy analysis in leydig-like cells derived from the ES cells.
RESULTSES-D3 cells were transfected with plasmid containing SF-1 gene successfully, and SF-1 was expressed 24 h after transfection. The SF-1-transfected ES-D3 cells were induced by RA and 8Br-cAMP to differentiate into leydig-like cells. The differentiated cells showed spindle shape with tentacles, which expressed the specific protein marker for leydig cells 3β-HSD1 and P450scc. Meanwhile, in these leydig-like cells, the expression of StAR increased compared with control group. 3β-HSD1, P450scc and StAR were not detected in negative control group.
CONCLUSIONWhen the ES-D3 cells are transfected with SF-1 plasmid and then treated with RA and 8Br-cAMP, the cells are able to differentiate into leydig-like cells, indicating that the model of directional differentiation of ES cells into leydig-like cells has been constructed successfully.
Animals ; Cell Differentiation ; drug effects ; genetics ; Cell Line ; Embryonic Stem Cells ; cytology ; metabolism ; Leydig Cells ; cytology ; metabolism ; Male ; Mice ; Steroidogenic Factor 1 ; genetics ; Transfection
4.Effect of nonylphenol on expression of steroidogenic factor-1 of Sertoli cells of rats cultivated in vitro.
Li-zhuo WANG ; Qi-yuan FAN ; Tai-yi JIN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2009;27(10):632-634
Animals
;
Cells, Cultured
;
Male
;
Phenols
;
toxicity
;
RNA, Messenger
;
genetics
;
Rats
;
Rats, Sprague-Dawley
;
Sertoli Cells
;
drug effects
;
metabolism
;
Steroidogenic Factor 1
;
genetics
;
metabolism
5.Study on inhibitory effect of medicated serum of SLW on estrogen production by human endometrial cells of endometriosis.
Ao LI ; Xiao-Yu XU ; Hui WANG ; Gang CHEN
China Journal of Chinese Materia Medica 2008;33(6):686-690
OBJECTIVETo explore the mechanism of inhibitory effect of SLW on estrogen production by endometrial cells of endometriosis.
METHODAfter the model of eutopic primary cultured endometrial cells of endometiosis and hysteromyoma in vitro was successfully established, the changes of steroidgenic factor-1 (SF-1), chicken ovalbumin upstream-transcription factor (COUP-TF), 17-beta-hydroxysteroid dehydrogenase 1 (17-beta-HSD1) and 17-beta-hydroxysteroid dehydrogenase 2 (17-beta-HSD2) mRNA were detected by RT-PCR before and after treatment of medicated serum of SLW. The changes of SF-1 and COUP-TF protein were also observed by western blot synchronously according to the same treatment method mentioned-above. Meanwhile ,the data of hysteromyoma group was obtained from the above experiments.
RESULTThe expression of SF-1 mRNA and protein, 17-beta-HSD1 mRNA was weak, but COUP-TF mRNA and protein, 17-beta-HSD2 mRNA was remarkable in Hysteromyoma endometrium, as compared with those of endometiosis ,which was taken as control group (P<0.01). After the 48 hours' treatment of medicated serum of 5.0, 2.5 g kg(-1) d(-1) of SLW , the expression of COUP-TF mRNA and protein, 17beta-HSD2 mRNA was found significantly increased, but SF-1 mRNA and protein, 17-beta-HSD 1 mRNA was decreased in contrast to the control group (P <0.01 or P <0.05). Although the expresson of COUP-TF mRNA and protein was increased, SF-1 protein and 17-beta-HSD1 mRNA was decreased in 1.25 g kg(-1) d(-1) medicated serum group ,compared with those of the control group (P <0.01), the low dose group had no apparent inhibitory effect on the expression of SF-1, 17-beta-HSD2 mRNA.
CONCLUSIONThe medicated serum of SLW could inhibit the secretion of estradiol in eutopic endometrial cells of endometiosis, and its mechanism might be associated with combined action of inhibiting expression of SF-1, 17-beta-HSD1 and up-regulating expression of COUP-TF, 17-beta-HSD2.
17-Hydroxysteroid Dehydrogenases ; genetics ; Adult ; Animals ; COUP Transcription Factors ; genetics ; Drugs, Chinese Herbal ; pharmacology ; Endometriosis ; blood ; metabolism ; pathology ; Endometrium ; drug effects ; metabolism ; pathology ; Estradiol Dehydrogenases ; Estrogens ; biosynthesis ; Female ; Gene Expression Regulation ; drug effects ; Humans ; In Vitro Techniques ; Middle Aged ; RNA, Messenger ; genetics ; metabolism ; Rats ; Serum ; chemistry ; Steroidogenic Factor 1 ; genetics
6.Prenatal exposure to diaethylstilbestrol in the rat inhibits transabdominal testicular descent with involvement of the INSL3/LGR8 system and HOXA10.
Lin ZHANG ; Xin-min ZHENG ; Jacques HUBERT ; Hang ZHENG ; Zhi-wei YANG ; Shi-wen LI
Chinese Medical Journal 2009;122(8):967-971
BACKGROUNDPrenatal exposure to diaethylstilbestrol (DES) has been found to lead to intra-abdominal cryptorchidism, but the mechanism is still not completely clear. This study investigated the roles of the INSL3/LGR8 system and HOXA10 in DES-induced intra-abdominal cryptorchidism (DIIAC). The effect of DES on steroidogenic factor-1 (SF-1), that has been reported to control transcription of insulin-like factor 3 (INSL3), was also investigated.
METHODSFifty pregnant female SD rats at embryonic day 13.5 (E13.5) were randomly assigned to five groups that received a subcutaneous injections of dimethyl sulfoxide (control), 2.5 mg/kg, 5 mg/kg, 10 mg/kg, or 20 mg/kg of DES. Male offspring were sacrificed at E19.5, and fetal mortality and the degree of transabdominal testicular ascent (DTA) were determined under a stereomicroscope. The mRNA expression of INSL3 and SF-1 in the testis and leucine rich repeat-containing G protein-coupled receptors 8 (LGR8) and homeobox-A10 (HOXA10) in the gubernaculum were determined by RT-PCR. The expression of INSL3 protein was determined by Western blotting.
RESULTSHigher fetal mortality and DTA were induced by DES in a dose-dependent manner (P < 0.01). Compared with the control group, the expression of INSL3 and SF-1 mRNA were down-regulated in a dose-dependent manner (P < 0.01), as was INSL3 protein; HOXA10 in the 2.5 mg/kg group and LGR8 mRNA in the 2.5 mg/kg and 5 mg/kg groups were not significantly different (P > 0.05); HOXA10 mRNA in groups C, D, and E decreased significantly and LGR8 mRNA levels in groups D and E increased significantly (P < 0.05, P < 0.01, respectively).
CONCLUSIONSDES can inhibit transabdominal testicular descent in a dose-dependent manner via down-regulating the expression of INSL3, which is induced by down-regulating the expression of SF-1. HOXA10 may not be involved in DES induced intra-abdominal cryptorchidism at 2.5 mg/kg, but is involved at 5, 10 and 20 mg/kg. LGR8 may not be responsible for DES-induced transabdominal testicular maldescent.
Animals ; Blotting, Western ; Cryptorchidism ; chemically induced ; metabolism ; Diethylstilbestrol ; toxicity ; Estrogens, Non-Steroidal ; toxicity ; Female ; Gene Expression Regulation, Developmental ; drug effects ; genetics ; physiology ; Homeodomain Proteins ; genetics ; physiology ; Injections, Subcutaneous ; Insulin ; genetics ; metabolism ; physiology ; Male ; Pregnancy ; Prenatal Exposure Delayed Effects ; metabolism ; Proteins ; genetics ; metabolism ; physiology ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Receptors, G-Protein-Coupled ; genetics ; physiology ; Reverse Transcriptase Polymerase Chain Reaction ; Steroidogenic Factor 1 ; genetics ; physiology