1.SNP genetic polymorphisms of MDR-1, CYP1A2 and CYPB11 genes in four canine breeds upon toxicological evaluation.
Rosa GAGLIARDI ; Silvia LLAMBI ; M Victoria ARRUGA
Journal of Veterinary Science 2015;16(3):273-280
The fields of pharmacogenetics and pharmacogenomics have become increasingly promising regarding the clinical application of genetic data to aid in prevention of adverse reactions. Specific screening tests can predict which animals express modified proteins or genetic sequences responsible for adverse effects associated with a drug. Among the genetic variations that have been investigated in dogs, the multidrug resistance gene (MDR) is the best studied. However, other genes such as CYP1A2 and CYP2B11 control the protein syntheses involved in the metabolism of many drugs. In the present study, the MDR-1, CYP1A2 and CYP2B11 genes were examined to identify SNP polymorphisms associated with these genes in the following four canine breeds: Uruguayan Cimarron, Border Collie, Labrador Retriever and German Shepherd. The results revealed that several SNPs of the CYP1A2 and CYP2B11 genes are potential targets for drug sensitivity investigations.
Animals
;
Aryl Hydrocarbon Hydroxylases/*genetics/metabolism
;
Cytochrome P-450 CYP1A2/*genetics/metabolism
;
Dogs/*genetics/metabolism
;
P-Glycoprotein/*genetics/metabolism
;
*Polymorphism, Single Nucleotide
;
Steroid Hydroxylases/*genetics/metabolism
2.The effects of serum calcium and 1 alpha hydroxylase on the expression of 24-hydroxylase gene.
Zeng-li ZHANG ; Bing-yan LI ; Yong SHI ; Jian TONG
Chinese Journal of Applied Physiology 2006;22(3):339-342
AIMTo investigate the effects of 1 alpha hydroxylase and serum calcium on the expression of 24-hydroxylase gene in mice kidney.
METHODSMice with targeted deletion of the 25-hydroxyvitamin D 1 alpha hydroxylase gene(1alpha (OH)ase-/-), and the vitamin D receptor gene (VDR-/-) were used. The study of each mutant had two groups which were (1) mutant with high calcium diet, which maintained fertility but left mice hypocalcaemia; (2) mutant with high lactose diet, which normalized calcium in two mutant. Mice in same litter were as control. There were six groups in total and each group had five mice. All mice were killed at 10-week-old. Serum calcium was determined by an autoanalyzer. RNA was isolated from mouse kidney and the express of 1 alpha hydroxylase gene and 24-Hydroxylase gene were studied by RT-PCR.
RESULTSOn the high calcium intake, all mutant animals were hypocalcaemia (1alpha (OH)ase-/- (78 +/- 10.4) mg/L, P < 0.05; VDR-/- (68 +/- 9.8) mg/L, P < 0.05. WT (111 +/- 16.5 mg/L), but when the high lactose diet was administered, serum calcium levels in two mutant mice rose to wild-type levels. The 1 alpha hydroxylase gene was expressed at very higher levels in the vitamin D receptor mutant mice than in wild-type mice when animals received a high calcium intake; This was reduced by eliminating hypocalcaemia with the high lactose diet. Expression of the 24(OH)ase gene was extremely down-regulated in two mutant mice on the high calcium diet but was restored to wild-type levels on the high lactose diet.
CONCLUSIONThe express of 24-hydroxylase gene was directly regulated by serum calcium rather than 1 alpha-hydroxylase. These studies indicate that both the serum calcium and 1 alpha-hydroxylase exert effects on the expression of 24-hydroxylase gene, but 1 alpha-hydroxylase take the effects by elevated the concentration of serum calcium. There are no direct interaction between 1 alpha-hydroxylase gene and 24-hydroxylase gene.
25-Hydroxyvitamin D3 1-alpha-Hydroxylase ; genetics ; Animals ; Calcium ; blood ; Gene Expression ; Mice ; Mice, Knockout ; Serum ; chemistry ; Steroid Hydroxylases ; genetics ; metabolism ; Vitamin D3 24-Hydroxylase
3.Effects of bicyclol on the activity and expression of CYP450 enzymes of rats after partial hepatectomy.
Xiao-Min YAO ; Bao-Lian WANG ; Yu GU ; Yan LI
Acta Pharmaceutica Sinica 2011;46(6):656-663
The present study was performed to investigate the effect of bicyclol on hepatic microsomal cytochrome P450 (CYP) activity, as well as gene and protein expressions in rats after partial hepatectomy (PH). Bicyclol (300 mg x kg(-1)) was given to rats subjected to 70% hepatectomy three times before operation. At 6 and 48 h after PH, blood and liver tissue samples were collected for the measurement of serum alanine aminotransferase (ALT), hepatic microsomal malondialdehyde (MDA) and total hepatic CYP content. The activities of four CYP isozymes were detected with liquid chromatography-mass spectrometry (LC-MS) and the gene and protein expressions were determined by RT-PCR and Western blotting assay. As a result, bicyclol pretreatment markedly inhibited the elevation of serum ALT and hepatic microsomal MDA, and prevented the decrease of total hepatic CYP content in PH rats. In addition, bicyclol significantly attenuated the reduction of CYP2C6 activity and mRNA expression, as well as the reduction of CYP2C11 activity in PH rats. Bicyclol can inhibit the decrease of CYP3A1/2 activity, and up-regulate the mRNA and protein expressions of CYP3A1 and CYP2E1. These results showed that bicyclol pretreatment might ameliorate abnormality in CYP450 isoforms during liver regeneration after PH, and this protective effect was likely due to its anti-oxidative property and enzyme induction.
Alanine Transaminase
;
blood
;
Animals
;
Antioxidants
;
pharmacology
;
Aryl Hydrocarbon Hydroxylases
;
genetics
;
metabolism
;
Biphenyl Compounds
;
pharmacology
;
Cytochrome P-450 CYP2E1
;
genetics
;
metabolism
;
Cytochrome P-450 CYP3A
;
genetics
;
metabolism
;
Cytochrome P-450 Enzyme System
;
metabolism
;
Cytochrome P450 Family 2
;
Enzyme Activation
;
drug effects
;
Enzyme Induction
;
drug effects
;
Hepatectomy
;
Male
;
Malondialdehyde
;
metabolism
;
Membrane Proteins
;
genetics
;
metabolism
;
Microsomes, Liver
;
metabolism
;
RNA, Messenger
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Steroid 16-alpha-Hydroxylase
;
genetics
;
metabolism
;
Steroid 21-Hydroxylase
;
genetics
;
metabolism
4.Effects of brucine combined with glycyrrhetinic acid or liquiritin on rat hepatic cytochrome P450 activities in vivo.
Pan-pan XING ; Wen-hua WU ; Peng DU ; Feng-mei HAN ; Yong CHEN
Acta Pharmaceutica Sinica 2011;46(5):573-580
Abstract: The activities of four CYP450 enzymes (CYP3A, 1A2, 2El and 2C) and the mRNA expression levels of CYP1A2, 2El, 2Cll and 3A1 in rat liver were determined after Wistar rats were orally administered with brucine (BR) at three dosage levels (3, 15 and 60 mg.kg-1 per day) and the high dose of BR combined with glycyrrhetinic acid (GA, 25 mg.kg-1 per day) or liquiritin (LQ, 20 mg.kg-1 per day) for 7 consecutive days. Compared with the control, brucine caused 24.5% and 34.6% decrease of CYP3A-associated testosterone 6beta-hydroxylation (6betaTesto-OH) and CYP2C-associated tolbutamide hydroxylation (Tol-OH), respectively, and 146.1% increase of CYP2El-associated para-nitrophenol hydroxylation (PNP-OH) at the high dose level. On the other hand, (BR+GA) caused 51.4% and 33.5% decrease, respectively, of CYP2El-associated PNP-OH and CYP1A2-associated ethoxyresorufin-O-de-ethylation (EROD) as compared with the high dose of BR group. Meanwhile, (BR+LQ) caused 41.1% decrease of CYP2El-associated PNP-OH and 37.7% increase of CYP2C-associated Tol-OH. The results indicated that the co-administration of BR with GA or LQ had effect on mRNA expression and activities of the CYP450 enzymes mentioned above to some extent, and the in vivo antagonism of LQ on BR-induced CYPs adverse effects and the in vivo inhibitory action of GA on CYP2E1 and 1A2 might play an important role in the detoxification of Radix Glycyrrhizae against Strychnos nux-vomica L.
Animals
;
Aryl Hydrocarbon Hydroxylases
;
genetics
;
metabolism
;
Cytochrome P-450 CYP1A1
;
metabolism
;
Cytochrome P-450 CYP1A2
;
genetics
;
metabolism
;
Cytochrome P-450 CYP2E1
;
genetics
;
metabolism
;
Cytochrome P-450 CYP3A
;
genetics
;
metabolism
;
Cytochrome P-450 Enzyme System
;
genetics
;
metabolism
;
Cytochrome P450 Family 2
;
Flavanones
;
pharmacology
;
Gene Expression Regulation, Enzymologic
;
Glucosides
;
pharmacology
;
Glycyrrhetinic Acid
;
pharmacology
;
Hydroxylation
;
Liver
;
enzymology
;
metabolism
;
Male
;
Nitrophenols
;
metabolism
;
Plants, Medicinal
;
chemistry
;
RNA, Messenger
;
metabolism
;
Rats
;
Rats, Wistar
;
Steroid 16-alpha-Hydroxylase
;
genetics
;
metabolism
;
Steroid Hydroxylases
;
metabolism
;
Strychnine
;
analogs & derivatives
;
isolation & purification
;
pharmacology
;
Strychnos nux-vomica
;
chemistry
;
Tolbutamide
;
metabolism
5.Establishment of in vitro evaluation model for CYP2B6 induction and its application to screen inducers among TCMs.
Cong XU ; Si-Yun XU ; Hai-Hong HU ; Lu-Shan YU ; Su ZENG
Acta Pharmaceutica Sinica 2013;48(1):119-124
This paper is to report the development of a high-throughput in vitro system to screen hPXR/CAR mediated CYP2B6 drug inducers, and the application of it into the quick determination of induction activity toward CYP2B6 by various commonly used traditional Chinese medicines (TCMs) extract. Dual reporter gene assays were performed. The hPXR/CAR expression vectors and the reporter vector pGL3-CYP2B6-Luc involved in the distal and proximal promoters of CYP2B6 were co-transfected into HepG2 cells. Relative luciferase activities in cell lysate were analyzed after 48 h treatment of blank vehicle or drugs to determine the induction activity toward CYP2B6 by various commonly used TCMs extract. The positive hPXR/hCAR activators rifampicin and CITCO were applied to make sure that the reporter gene model was successfully established. Then 5 kinds of commonly used TCM extracts and 1 herbal compound were successfully investigated, some were found to activate hPXR or hCAR and therefore have the potential to induce CYP2B6 enzyme. This is the first domestic article to report the hCAR3-mediated CYP2B6 induction model and the establishment of a reporter gene system for hPXR/CAR-mediated CYP2B6 induction can be an effective and systemic in vitro method to investigate the drug inducers of CYP2B6 and to explain the mechanism involved.
Aryl Hydrocarbon Hydroxylases
;
genetics
;
metabolism
;
Cytochrome P-450 CYP2B6
;
Drugs, Chinese Herbal
;
isolation & purification
;
pharmacology
;
Genes, Reporter
;
Genetic Vectors
;
Hep G2 Cells
;
High-Throughput Screening Assays
;
Humans
;
Luciferases
;
genetics
;
metabolism
;
Oximes
;
pharmacology
;
Plants, Medicinal
;
chemistry
;
Plasmids
;
Receptors, Cytoplasmic and Nuclear
;
genetics
;
metabolism
;
Receptors, Steroid
;
genetics
;
metabolism
;
Rifampin
;
pharmacology
;
Thiazoles
;
pharmacology
;
Transfection
6.Effect of shenfu injection on CYP450s of rat liver.
Han LI ; Yu-Guang WANG ; Zeng-Chun MA ; Si-Si ZHOU ; Qian-De LIANG ; Cheng-Rong XIAO ; Hong-Ling TAN ; Xiang-Lin TANG ; Hua LI ; Guo-Lin SHEN ; Bo-Li ZHANG ; Yue GAO
Acta Pharmaceutica Sinica 2013;48(5):728-733
The paper is to report the study of the effect of Shenfu injection on the enzyme activity of liver CYP450 and its mRNA level of rat liver. Microsome of rat liver was prepared after intravenous administration of Shenfu injection for 7 days. The enzyme activity was quantified by Cocktail method. Meanwhile, the mRNA expression of CYP1A2, CYP2B1/2, CYP2C11 and CYP3A1 in the liver was detected by RT-PCR. Shenfu injection obviously induced the enzyme activities of CYP2B and CYP2C. Meantime Shenfu injection decreased the enzyme activities of CYP1A2 and CYP3A. The mRNA levels of CYP2B and CYP2C were also induced in rats treated with Shenfu injection. But it obviously inhibited the mRNA level of CYP1A2 and CYP3A. Since the enzyme activity and mRNA level were obviously changed after administration, the potential effect of drug-drug interaction should be concerned.
Aconitum
;
chemistry
;
Animals
;
Aryl Hydrocarbon Hydroxylases
;
genetics
;
metabolism
;
Cytochrome P-450 CYP1A2
;
genetics
;
metabolism
;
Cytochrome P-450 CYP2B1
;
genetics
;
metabolism
;
Cytochrome P-450 CYP3A
;
genetics
;
metabolism
;
Cytochrome P-450 Enzyme System
;
genetics
;
metabolism
;
Cytochrome P450 Family 2
;
Drug Combinations
;
Drugs, Chinese Herbal
;
administration & dosage
;
isolation & purification
;
pharmacology
;
Injections
;
Male
;
Microsomes, Liver
;
enzymology
;
Panax
;
chemistry
;
Plants, Medicinal
;
chemistry
;
RNA, Messenger
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Steroid 16-alpha-Hydroxylase
;
genetics
;
metabolism
7.Effects of ethyl acetate extract of Semen Hoveniae on liver microsomal cytochrome P450 isoenzyme in rat.
Hong ZHANG ; Juan SONG ; Xin-An ZHAN ; Ye TAN
China Journal of Chinese Materia Medica 2007;32(18):1917-1921
OBJECTIVETo investigate the effects of the ethyl acetate extract of Semen Hoveniae (ESH) on liver microsomal cytochrome P450 isoenzyme in rats.
METHODThe rats were given orally the ESH in the doses of 0.14, 0.17, 0.2 g x kg (equivalent to the crude herb) for 10 days respectively. Rat liver microsomal cytochrome P450, NADPH-Cyt C reductase, erythromycin N-demethylase (ERD), Aniline hydroxylase (ANH), aminopyrine N-demethylase (ADM) activities were quantitated by UV chromatography. The levels of mRNA expression of CYP1A1, CYP2C11, CYP2E1 and CYP3A1 were detected by semi-quantitative reverse transcripatase-polymerase chain reaction (RT-PCR).
RESULTThe cytochrome P450 content, NADPH-Cyt C reductase activities and erythromycin N-demethylase (ERD) activities were not affected. Aniline hydroxylase (ANH) activities in liver were decreased by up to35.1%; aminopyrine N-demethylase (ADM) activitiesin liver were increased by up to 42.4%. The mRNA expression of CYP1A1, CYP2C11 and CYP3A1 were found to be increased markedly.
CONCLUSIONA specific effect of ESH on liver microsomal cytochrome P450 isoenzyme in rats was observed in this investigation. ESH had various effects on liver microsomal cytochrome P450 isoenzyme.
Acetates ; chemistry ; Aminopyrine N-Demethylase ; metabolism ; Aniline Hydroxylase ; genetics ; metabolism ; Animals ; Aryl Hydrocarbon Hydroxylases ; genetics ; metabolism ; Cytochrome P-450 CYP1A1 ; genetics ; metabolism ; Cytochrome P-450 CYP2E1 ; genetics ; metabolism ; Cytochrome P-450 CYP3A ; genetics ; metabolism ; Cytochrome P-450 Enzyme System ; genetics ; metabolism ; Cytochrome P450 Family 2 ; Drugs, Chinese Herbal ; chemistry ; isolation & purification ; pharmacology ; Gene Expression Regulation, Enzymologic ; drug effects ; Male ; Microsomes, Liver ; drug effects ; enzymology ; NADPH-Ferrihemoprotein Reductase ; genetics ; metabolism ; Plants, Medicinal ; chemistry ; RNA, Messenger ; genetics ; metabolism ; Random Allocation ; Rats ; Rats, Wistar ; Reverse Transcriptase Polymerase Chain Reaction ; Rhamnaceae ; chemistry ; Seeds ; chemistry ; Steroid 16-alpha-Hydroxylase ; genetics ; metabolism
8.In vivo effect of triptolide combined with glycyrrhetinic acid on rat cytochrome P450 enzymes.
Feng-Mei HAN ; Zhi-Hong PENG ; Jun-Jun WANG ; Yong CHEN
Acta Pharmaceutica Sinica 2013;48(7):1136-1141
Triptolide (TP) is a major active component in Tripterygium root, but its therapeutic window was very narrow due to its severe multi-organ toxicity. In this work, the effect of TP combined with glycyrrhetic acid (GA) on mRNA expression and activity of four cytochrome P450 (CYP) enzymes in rat liver was studied after intragastric administration of TP (0.05, 0.3 and 0.6 mg x kg(-1) x day(-1)) and TP (0.6 mg x kg(-1) x day(-1)) combined with GA (30 mg x kg(-1) x day(-1)) for 7 consecutive days. Compared with the control, the high dose of TP significantly up-regulated the mRNA expression levels of CYP2E1, 1A2, 3A1 and 2C11, the co-administration of TP and GA further up-regulated the mRNA expression levels of CYP3A1, 2C11 and 2E1 as compared with the high dose of TP. Meanwhile, TP at high dose and combined with GA significantly increased CYP3A-associated testosterone 6beta-hydroxylation activity (2.2-fold and 4.1-fold, respectively) as compared with the control. Because TP is mainly metabolized by CYP3A2 in male rats, the present work indicated that TP-induced increase of CYP3A activity might be an important reason for the rapidly metabolic clearance of TP in rat liver, and GA can reduce the hepatotoxicity of TP by promoting its hepatic metabolic clearance. Furthermore, the results also suggest that the drug interactions might be occurred when TP and GA were co-administered with other CYP3A substrate drug.
Animals
;
Aryl Hydrocarbon Hydroxylases
;
genetics
;
metabolism
;
Cytochrome P-450 CYP1A2
;
genetics
;
metabolism
;
Cytochrome P-450 CYP2E1
;
genetics
;
metabolism
;
Cytochrome P-450 CYP3A
;
genetics
;
metabolism
;
Cytochrome P-450 Enzyme System
;
genetics
;
metabolism
;
Cytochrome P450 Family 2
;
Diterpenes
;
administration & dosage
;
isolation & purification
;
pharmacology
;
Dose-Response Relationship, Drug
;
Drug Combinations
;
Drug Interactions
;
Enzyme Activation
;
Epoxy Compounds
;
administration & dosage
;
isolation & purification
;
pharmacology
;
Glycyrrhetinic Acid
;
isolation & purification
;
pharmacology
;
Liver
;
enzymology
;
Male
;
Phenanthrenes
;
administration & dosage
;
isolation & purification
;
pharmacology
;
Plant Roots
;
chemistry
;
Plants, Medicinal
;
chemistry
;
RNA, Messenger
;
metabolism
;
Rats
;
Rats, Wistar
;
Steroid 16-alpha-Hydroxylase
;
genetics
;
metabolism
;
Tripterygium
;
chemistry