1.RNA in human sperm.
Rui Pires MARTINS ; Stephen A KRAWETZ
Asian Journal of Andrology 2005;7(2):115-120
We have yet to develop a fundamental understanding of the molecular complexities of human spermatozoa. This encompasses the unique packaging and structure of the sperm genome along with their paternally derived RNAs in preparation for their delivery to the egg. The diversity of these transcripts is vast, including several anti-sense molecules resembling known regulatory micro-RNAs. The field is still grasping with its delivery to the oocyte at fertilization and possible significance. It remains tempting to analogize them to maternally-derived transcripts active in early embryo patterning. Irrespective of their role in the embryo, their use as a means to assess male factor infertility is promising.
DNA
;
genetics
;
metabolism
;
Humans
;
Male
;
RNA, Messenger
;
genetics
;
Spermatozoa
;
metabolism
2.On the significance of RNA in human sperm.
National Journal of Andrology 2005;11(3):170-174
Our understanding of the molecular complexities of human spermatozoa continues to be rather rudimentary. This includes the unique packaging and structure of the sperm genome along with its paternally derived RNAs in preparation for their delivery to the egg. Both highlight the inadequacy in our understanding of how these genetic factors contribute to a healthy child. As a means to address this deficiency it was recently shown that human spermatozoal RNA isolated from the ejaculate can be used to transcriptionally profile the male gamete. It is fully expected that a genetic fingerprint characteristic of the normal fertile spermatozoon can be identified and that deviations from this profile can be detected.
Expressed Sequence Tags
;
Humans
;
Male
;
Oligonucleotide Array Sequence Analysis
;
RNA
;
genetics
;
isolation & purification
;
Spermatozoa
;
chemistry
;
physiology
;
Transcription, Genetic
3.Characterization of nucleohistone and nucleoprotamine components in the mature human sperm nucleus.
Yan LI ; Claudia LALANCETTE ; David MILLER ; Stephen A KRAWETZ
Asian Journal of Andrology 2008;10(4):535-541
AIMTo simultaneously determine the localization of histones and protamines within human sperm nuclei.
METHODSImmunofluorescence of the core histones and protamines and fluorescence in situ hybridization of the telomere region of chromosome 16 was assessed in decondensed human sperm nuclei.
RESULTSImmunofluorescent localization of histones, protamine 1 (PRM1) and protamine 2 (PRM2) along with fluorescence in situ hybridization localization of chromosome 16 telomeric sequences revealed a discrete distribution in sperm nuclei. Histones localized to the posterior ring region (i.e. the sperm nuclear annulus), whereas PRM1 and PRM2 appeared to be dispersed throughout the entire nucleus.
CONCLUSIONThe co-localization of the human core sperm histones with the telomeric regions of chromosome 16 is consistent with the reorganization of specific non-protamine regions into a less compacted state.
Cell Nucleus ; metabolism ; Chromosomes, Human, Pair 16 ; metabolism ; Histones ; metabolism ; Humans ; Male ; Protamines ; metabolism ; Spermatozoa ; metabolism ; Telomere ; metabolism