1.Protease activated receptor 2 and epidermal growth factor receptor are involved in the regulation of human sperm motility.
Karina ZITTA ; Martin ALBRECHT ; Stephan WEIDINGER ; Artur MAYERHOFER ; Frank KÖHN
Asian Journal of Andrology 2007;9(5):690-696
AIMTo investigate mechanisms of tryptase-induced reduction of sperm motility and explore whether epidermal growth factor receptor (EGF-R) and protease activated receptor 2 (PAR-2)- associated pathways are involved.
METHODSFresh semen was collected from healthy donors (n = 15). Semen parameters and quality were assessed in accordance with the World Health Organization (WHO) criteria. Swim-up sperm were fixed and subjected to immunocytochemistry and immunoelectronmicroscopy with specific antibodies directed against PAR-2 and EGF-R. Protein extractions from swim-up spermatozoa were analyzed by Western blotting with antibodies for both receptors. Motility of spermatozoa was evaluated by computer-assisted semen analysis.
RESULTSImmunocytochemistry found PAR-2 and EGF-R in approximately 30% of examined human ejaculated spermatozoa. Both receptors were localized in the plasma membrane. Like tryptase, the PAR-2 synthetic agonist SLIGKV reduced sperm motility, and this effect was inhibited by application of two specific EGF-R pathway blockers (AG1478 and PD168393).
CONCLUSIONThe observed reduction of sperm motility by tryptase through the PAR-2 receptor involves EGF-R pathways.
Ejaculation ; Enzyme Inhibitors ; pharmacology ; Humans ; Male ; Microscopy, Immunoelectron ; Oligopeptides ; pharmacology ; Quinazolines ; pharmacology ; Receptor, Epidermal Growth Factor ; antagonists & inhibitors ; drug effects ; physiology ; Receptor, PAR-2 ; physiology ; Reference Values ; Semen ; physiology ; Sperm Motility ; drug effects ; physiology ; Spermatozoa ; drug effects ; physiology ; ultrastructure ; Tyrphostins ; pharmacology
2.Does standoff material affect acoustic radiation force impulse elastography? A preclinical study of a modified elastography phantom.
Katharina HOLLERIETH ; Bernhard GASSMANN ; Stefan WAGENPFEIL ; Stephan KEMMNER ; Uwe HEEMANN ; Konrad Friedrich STOCK
Ultrasonography 2018;37(2):140-148
PURPOSE: This study was conducted to determine the influence of standoff material on acoustic radiation force impulse (ARFI) measurements in an elasticity phantom by using two different probes. METHODS: Using ARFI elastography, 10 observers measured the shear wave velocity (SWV, m/sec) in different lesions of an elasticity phantom with a convex 4C1 probe and a linear 9L4 probe. The experimental setup was expanded by the use of an interposed piece of porcine muscle as standoff material. The probe pressure on the phantom was registered. RESULTS: Faulty ARFI measurements occurred more often when quantifying the hardest lesion (74.0 kPa 4.97 m/sec) by the 9L4 probe with the porcine muscle as a standoff material interposed between the probe and the phantom. The success rate for ARFI measurements in these series was 52.4%, compared with 99.5% in the other series. The SWV values measured with the 9L4 probe were significantly higher (3.33±1.39 m/sec vs. 2.60±0.74 m/sec, P < 0.001 in the group without muscle) and were closer to the reference value than those measured with the 4C1 probe (0.25±0.23 m/sec vs. 0.85±1.21 m/sec, P < 0.001 in the same group). The SWV values measured when using the muscle as a standoff material were lower than those without the muscle (significant for 9L4, P=0.040). The deviation from the reference value and the variance increased significantly with the 9L4 probe if the muscle was in situ (B=0.27, P=0.004 and B=0.32, P < 0.001). In our study, the pressure exerted by the operator had no effect on the SWV values. CONCLUSION: The presence of porcine muscle acting as a standoff material influenced the occurrence of failed measurements as well as the variance and the accuracy of the measured values. The linear high-frequency probe was particularly affected.
Acoustics*
;
Elasticity
;
Elasticity Imaging Techniques*
;
Muscles
;
Reference Values
;
Transducers
;
Ultrasonography
3.Mobile Real-time Tracking of Acute Stroke Patients and Instant, Secure Inter-team Communication - the Join App.
Stephan A MUNICH ; Lee A TAN ; Danilo M NOGUEIRA ; Kiffon M KEIGHER ; Michael CHEN ; R Webster CROWLEY ; James J CONNERS ; Demetrius K LOPES
Neurointervention 2017;12(2):69-76
PURPOSE: The primary correlate to survival and preservation of neurologic function in patients suffering from an acute ischemic stroke is time from symptom onset to initiation of therapy and reperfusion. Communication and coordination among members of the stroke team are essential to maximizing efficiency and subsequently early reperfusion. In this work, we aim to describe our preliminary experience using the Join mobile application as a means to improve interdisciplinary team communication and efficiency. MATERIALS AND METHODS: We describe our pilot experience with the initiation of the Join mobile application between July 2015 and July 2016. With this application, a mobile beacon is transported with the patient on the ambulance. Transportation milestone timestamps and geographic coordinates are transmitted to the treating facility and instantly communicated to all treatment team members. The transport team / patient can be tracked en route to the treating facility. RESULTS: During our pilot study, 62 patients were triaged and managed using the Join application. Automated time-stamping of critical events, geographic tracking of patient transport and summary documents were obtained for all patients. Treatment team members had an overall favorable impression of the Join application and recommended its continued use. CONCLUSION: The Join application is one of several components of a multi-institutional, interdisciplinary effort to improve the treatment of patients with acute ischemic stroke. The ability of the treatment team to track patient transport and communicate with the transporting team may improve reperfusion time and, therefore, improve neurologic outcomes.
Ambulances
;
Humans
;
Mobile Applications
;
Pilot Projects
;
Reperfusion
;
Stroke*
;
Transportation
4.Bone marrow-derived mesenchymal stem cells migrate to healthy and damaged salivary glands following stem cell infusion.
Silke SCHWARZ ; Ralf HUSS ; Michaela SCHULZ-SIEGMUND ; Breda VOGEL ; Sven BRANDAU ; Stephan LANG ; Nicole ROTTER
International Journal of Oral Science 2014;6(3):154-161
Xerostomia is a severe side effect of radiation therapy in head and neck cancer patients. To date, no satisfactory treatment option has been established. Because mesenchymal stem cells (MSCs) have been identified as a potential treatment modality, we aimed to evaluate stem cell distribution following intravenous and intraglandular injections using a surgical model of salivary gland damage and to analyse the effects of MSC injections on the recruitment of immune cells. The submandibular gland ducts of rats were surgically ligated. Syngeneic adult MSCs were isolated, immortalised by simian virus 40 (SV40) large T antigen and characterized by flow cytometry. MSCs were injected intravenously and intraglandularly. After 1, 3 and 7 days, the organs of interest were analysed for stem cell recruitment. Inflammation was analysed by immunohistochemical staining. We were able to demonstrate that, after intravenous injection, MSCs were recruited to normal and damaged submandibular glands on days 1, 3 and 7. Unexpectedly, stem cells were recruited to ligated and non-ligated glands in a comparable manner. After intraglandular injection of MSCs into ligated glands, the presence of MSCs, leucocytes and macrophages was enhanced, compared to intravenous injection of stem cells. Our data suggest that injected MSCs were retained within the inflamed glands, could become activated and subsequently recruited leucocytes to the sites of tissue damage.
Animals
;
Antigens, Polyomavirus Transforming
;
immunology
;
Cell Culture Techniques
;
Cell Movement
;
physiology
;
Cell Transformation, Viral
;
Clone Cells
;
physiology
;
Flow Cytometry
;
Immunohistochemistry
;
Injections, Intralesional
;
Injections, Intravenous
;
Leukocytes
;
pathology
;
Macrophages
;
pathology
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stromal Cells
;
pathology
;
physiology
;
Necrosis
;
Rats, Wistar
;
Salivary Ducts
;
pathology
;
Sialadenitis
;
pathology
;
therapy
;
Simian virus 40
;
immunology
;
Submandibular Gland
;
pathology
;
Submandibular Gland Diseases
;
pathology
;
therapy
;
Time Factors